The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Receptor-induced activation of Drosophila TRP gamma by polyunsaturated fatty acids.

Cellular calcium homeostasis is regulated by hormones and neurotransmitters, resulting in the activation of a variety of proteins, in particular, channel proteins of the plasma membrane and of intracellular compartments. Such channels are, for example, TRP channels of the TRPC protein family that are activated by various mediators from receptor-stimulated signaling cascades. In Drosophila, two TRPC channels, TRP and TRPL, are involved in phototransduction. In addition, a third Drosophila TRPC channel, TRPgamma, has been identified and described as an auxiliary subunit of TRPL. Beyond it, our data show that heterologously expressed TRPgamma formed a receptor-activated, outwardly rectifying cation channel independent from TRPL co-expression. Analysis of the activation mechanism revealed that TRPgamma is activated by various polyunsaturated fatty acids generated in a phospholipase C- and phospholipase A(2)-dependent manner. The most potent activator of TRPgamma, the stable analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid, induced currents in single channel recordings. Here we show that upon heterologous expression TRPgamma forms a homomeric channel complex that is activated by polyunsaturated fatty acids as mediators of receptor-dependent signaling pathways. Reverse transcription PCR analysis showed that TRPgamma is expressed in Drosophila heads and bodies. Its body-wide expression pattern and its activation mechanism suggest that TRPgamma forms a fly cation channel responsible for the regulation of intracellular calcium in a variety of hormonal signaling cascades.[1]

References

  1. Receptor-induced activation of Drosophila TRP gamma by polyunsaturated fatty acids. Jörs, S., Kazanski, V., Foik, A., Krautwurst, D., Harteneck, C. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities