Analysis of the sex ratio in preimplantation embryos from B6.K1 and B6.K2 Ped gene congenic mice.
Purpose: The mouse preimplantation embryo development (Ped) gene product, Qa-2, which is the homolog of human HLA-G, influences the rate of preimplantation embryonic development and overall reproductive success. The sex ratio in preimplantation embryos from Ped gene congenic mice was examined in order to determine whether embryo sex is a confounding factor in the control of the rate of preimplantation development. Methods: B6.K1 (Ped slow) and B6.K2 (Ped fast) congenic mice differ only in the absence (B6.K1) or presence (B6.K2) of the genes encoding Qa-2 protein. We analyzed the sex of B6.K1 (n=221) and B6.K2 (n=260) preimplantation embryos by using Real-Time PCR with primers specific for the X and Y chromosomes. Results: We found that there was no statistically significant difference in the ratio of male to female preimplantation embryos in either strain. Conclusions: We conclude that the sex of the embryos is not a confounding factor that affects the Ped gene control of the rate of preimplantation development. Therefore, the Ped gene is entirely responsible for mediating the faster development of B6.K2 embryos compared to B6.K1 embryos.[1]References
- Analysis of the sex ratio in preimplantation embryos from B6.K1 and B6.K2 Ped gene congenic mice. Byrne, M.J., Newmark, J.A., Warner, C.M. J. Assist. Reprod. Genet. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg