The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The reduced bactericidal function of complement c5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes.

Complement C5-deficient (C5(-/-)) macrophages derived from B.10 congenic mice were found to be defective in killing intracellular Mycobacterium tuberculosis (MTB). They were bacteriostatic after activation with IFN-gamma alone but bactericidal in the combined presence of IFN-gamma and C5-derived C5a anaphylatoxin that was deficient among these macrophages. Reduced killing correlated with a decreased production of reactive oxygen species (ROS) in the C5(-/-) macrophages measured using fluorescent probes. Furthermore, a lack of colocalization of p47(phox) protein of the NADPH oxidase (phox) complex with GFP-expressing MTB (gfpMTB) indicated a defective assembly of the phox complex on phagosomes. Reconstitution with C5a, a known ROS activator, enhanced the assembly of phox complex on the phagosomes as well as the production of ROS that inhibited the growth of MTB. Protein kinase C (PKC) isoforms are involved in the phosphorylation and translocation of p47(phox) onto bacterial phagosomes. Western blot analysis demonstrated a defective phosphorylation of PKC (alpha, beta, delta) and PKC-zeta in the cytosol of C5(-/-) macrophages compared with C5 intact (C5(+/+)) macrophages. Furthermore, in situ fluorescent labeling of phagosomes indicated that PKC-beta and PKC-zeta were the isoforms that are not phosphorylated in C5(-/-) macrophages. Because Fc receptor- mediated phox assembly was normal in both C5(-/-) and C5(+/+) macrophages, the defect in phox assembly around MTB phagosomes was specific to C5 deficiency. Reduced bactericidal function of C5(-/-) macrophages thus appears to be due to a defective assembly and production of ROS that prevents effective killing of intracellular MTB.[1]

References

  1. The reduced bactericidal function of complement c5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. Daniel, D.S., Dai, G., Singh, C.R., Lindsey, D.R., Smith, A.K., Dhandayuthapani, S., Hunter, R.L., Jagannath, C. J. Immunol. (2006) [Pubmed]
 
WikiGenes - Universities