The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse.

The postnatal development of the mouse is characterised by a period of hypo-responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to moderate stressors. Maternal separation disinhibits this blockade of the HPA axis, but the mechanism responsible is not clear. The present study examined the influence of metabolic signals on the central and peripheral components of the HPA axis in neonatal mice aged 8 days in absence or presence of the mother. Reductions in plasma glucose and leptin as well as rapid increases in plasma ghrelin were apparent in the neonate 4 h following maternal deprivation and maximal at 8 h. In addition, maternal separation induced an increase of neuropeptide Y (NPY) mRNA expression in the arcuate nucleus, a decrease of corticotrophin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus and a rise in serum corticosterone. Pharmacological manipulation of the metabolic signals attenuated the HPA response to maternal separation. Thus, the rise in plasma corticosterone induced by maternal separation was ameliorated by prevention of reduction in blood glucose or blockade of the ghrelin signalling pathway, as were the hypothalamic changes in NPY and CRH mRNAs. By contrast, leptin treatment did not affect the HPA axis response to maternal separation. Together these results suggest that metabolic signals play an important role in triggering the HPA response of the neonate to maternal separation.[1]

References

  1. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. Schmidt, M.V., Levine, S., Alam, S., Harbich, D., Sterlemann, V., Ganea, K., de Kloet, E.R., Holsboer, F., M??ller, M.B. J. Neuroendocrinol. (2006) [Pubmed]
 
WikiGenes - Universities