Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice.
Reelin-deficient mice have been used to investigate the role of this extracellular protein in cortico-striatal plasticity and striatum-related behaviours. Here we show that a repetitive electrical stimulation of the cortico-striatal pathway elicited long-term potentiation (LTP) in homozygous reeler (rl/rl) mice, while causing long-term depression in their wild-type (+/+) littermates. The N-methyl-d-aspartic acid (NMDA) receptor antagonist d-(-)-2 amino-5-phosphonopentanoic acid prevented the induction of LTP in (rl/rl) mice, thus confirming that this form of synaptic plasticity was NMDA receptor-dependent. Interestingly, in the presence of tiagabine, a blocker of gamma-aminobutyric acid (GABA) re-uptake system, the probability that (rl/rl) mice showed LTP decreased significantly, thus suggesting an impaired GABAergic transmission in reeler mutants. Consistent with this view, a decreased density of parvalbumin-positive GABAergic striatal interneurons was found in (rl/rl) mice in comparison to (+/+) mice. Finally, compatible with their abnormal striatal function (rl/rl) mice exhibited procedural learning deficits. Our data, showing alterations in cortico-striatal plasticity largely depending on a depressed GABAergic tone, delineate a mechanism whereby the lack of reelin may affect cognitive functions.[1]References
- Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Marrone, M.C., Marinelli, S., Biamonte, F., Keller, F., Sgobio, C.A., Ammassari-Teule, M., Bernardi, G., Mercuri, N.B. Eur. J. Neurosci. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









