The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Muscarinic acetylcholine receptor-dependent induction of persistent synaptic enhancement in rat hippocampus in vivo.

Presynaptic terminal autoinhibitory muscarinic acetylcholine (ACh) receptors are predominantly of the M2/M4 subtypes and antagonists at these receptors may facilitate cognitive processes by increasing ACh release. The present study examined the ability of the M2/M4 muscarinic ACh receptor antagonist N,N'-bis [6-[[(2-methoxyphenyl)methyl]amino]hexyl]-1,8-octane diamine tetrahydrochloride (methoctramine) to induce and modulate synaptic plasticity in the CA1 area of the hippocampus in urethane-anesthetized rats. Both methoctramine and another M2/M4 antagonist, {11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one} (AF-DX 116), caused a rapid onset and persistent increase in baseline synaptic transmission after i.c.v. injection. Consistent with a requirement for activation of non-M2 receptors by endogenously released ACh, the M1/M3 receptor selective antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and 4,9-dihydro-3-methyl-4-[(4-methyl-1-piperazinyl)acetyl]-10H-thieno[3,4-b][1,5]benzodiazepin-10-one dihydrochloride (telenzepine) prevented the induction of the persistent synaptic enhancement by methoctramine. The requirement for cholinergic activation was transient and independent of nicotinic ACh receptor stimulation. The synaptic enhancement was inhibited by the prior induction of long-term potentiation (LTP) by high frequency stimulation but induction of the synaptic enhancement by methoctramine before high frequency stimulation did not inhibit LTP. Unlike high frequency stimulation-evoked LTP, the synaptic enhancement induced by methoctramine appeared to be NMDA receptor-independent. The present studies provide evidence for the rapid induction of a persistent potentiation at hippocampal glutamatergic synapses by endogenous ACh in vivo following disinhibition of inhibitory M2 muscarinic autoreceptors.[1]

References

 
WikiGenes - Universities