The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Trafficking of phosphatidylinositol by phosphatidylinositol transfer proteins.

PtdIns is synthesized at the endoplasmic reticulum and its intracellular distribution to other organelles can be facilitated by lipid transfer proteins [PITPs (phosphatidylinositol transfer proteins)]. In this review, I summarize the current understanding of how PITPs are regulated by phosphorylation, how can they dock to membranes to exchange their lipid cargo and how cells use PITPs in signal transduction and membrane delivery. Mammalian PITPs, PITPalpha and PITPbeta, are paralogous genes that are 94% similar in sequence. Their structural design demonstrates that they can sequester PtdIns or PtdCho (phosphatidylcholine) in their hydrophobic cavity. To deliver the lipid cargo to a membrane, PITP has to undergo a conformational change at the membrane interface. PITPs have a higher affinity for PtdIns than PtdCho, which is explained by hydrogen-bond contacts between the inositol ring of PtdIns and the side-chains of four amino acid residues, Thr(59), Lys(61), Glu(86) and Asn(90), in PITPs. Regardless of species, these residues are conserved in all known PITPs. PITP transfer activity is regulated by a conserved serine residue (Ser(166)) that is phosphorylated by protein kinase C. Ser(166) is only accessible for phosphorylation when a conformational change occurs in PITPs while docking at the membrane interface during lipid transfer, thereby coupling regulation of activity with lipid transfer function. Biological roles of PITPs include their ability to couple phospholipase C signalling to neurite outgrowth, cell division and stem cell growth.[1]

References

 
WikiGenes - Universities