The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis.

BACKGROUND/AIMS: Studies in animal models and humans suggest a link between endotoxemia and non-alcoholic steatohepatitis. Since Kupffer cells are responsible for clearing endotoxin and are activated via endotoxin interaction with Toll-like receptor 4 (TLR-4), we examined the relationship between hepatic TLR-4 expression and Kupffer cell content during the genesis of steatohepatitis. METHODS: Male C57BL/6, C3H/HouJ and TLR-4 mutant C3H/HeJ mice were fed control or methionine/choline-deficient diet (MCDD). In one group of C57BL/6 mice, Kupffer cells were depleted by weekly intraperitoneal injections of clodronate liposomes. After 3 weeks, serum ALT activity and portal endotoxin levels were measured. Real-time PCR was used to examine mRNA expression of TLR-4, TLR-2, CD14, MD-2, TGFbeta, TNFalpha, CD36, PPAR-alpha, liver fatty acid binding protein (L-FABP) and collagen alpha1. RESULTS: We observed histological evidence typical of steatohepatitis, portal endotoxemia and enhanced TLR-4 expression in wild type mice fed MCDD. In contrast, injury and lipid accumulation markers were significantly lower in TLR-4 mutant mice. Destruction of Kupffer cells with clodronate liposomes blunted histological evidence of steatohepatitis and prevented increases in TLR-4 expression. CONCLUSIONS: These findings demonstrate the importance of TLR-4 signaling and underscore a direct link between TLR-4 and Kupffer cells in the pathogenesis of steatohepatitis.[1]

References

  1. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. Rivera, C.A., Adegboyega, P., van Rooijen, N., Tagalicud, A., Allman, M., Wallace, M. J. Hepatol. (2007) [Pubmed]
 
WikiGenes - Universities