The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus.

The cell cycle of the budding yeast Saccharomyces cerevisiae has been investigated through the study of conditional cdc mutations that specifically affect cell cycle performance. Cells bearing the cdc68-1 mutation (J. A. Prendergast, L. E. Murray, A. Rowley, D. R. Carruthers, R. A. Singer, and G. C. Johnston, Genetics 124:81-90, 1990) are temperature sensitive for the performance of the G1 regulatory event, START. Here we describe the CDC68 gene and present evidence that the CDC68 gene product functions in transcription. CDC68 encodes a 1,035-amino-acid protein with a highly acidic and serine-rich carboxyl terminus. The abundance of transcripts from several unrelated genes is decreased in cdc68-1 mutant cells after transfer to the restrictive temperature, while at least one transcript, from the HSP82 gene, persists in an aberrant fashion. Thus, the cdc68-1 mutation has both positive and negative effects on gene expression. Our findings complement those of Malone et al. (E. A. Malone, C. D. Clark, A. Chiang, and F. Winston, Mol. Cell. Biol. 11:5710-5717, 1991), who have independently identified the CDC68 gene (as SPT16) as a transcriptional suppressor of delta-insertion mutations. Among transcripts that rapidly become depleted in cdc68-1 mutant cells are those of the G1 cyclin genes CLN1, CLN2, and CLN3/WHI1/DAF1, whose activity has been previously shown to be required for the performance of START. The decreased abundance of cyclin transcripts in cdc68-1 mutant cells, coupled with the suppression of cdc68-1-mediated START arrest by the CLN2-1 hyperactive allele of CLN2, shows that the CDC68 gene affects START through cyclin gene expression.[1]


WikiGenes - Universities