The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Temporal and regional differences in the expression pattern of distinct retinoic acid receptor-beta transcripts in the chick embryo.

Retinoic acid (RA) is a signaling molecule apparently involved in a variety of morphogenetic processes, such as patterning of developing and regenerating vertebrate limbs. RA binds to specific intracellular receptors that constitute a multigene family. RA receptors (RAR) bind to the regulatory region of specific target genes and thereby control the expression of these genes. Here we report the sequence and spatiotemporal expression pattern of RAR-beta from chick. Northern blots of RNA from whole embryos and from limb buds reveal the presence of transcripts of 3.2, 3.4, and 4.6 kb in size. Using two riboprobes, one that hybridizes to all three RAR-beta mRNAs and a second one, specific for the 4.6 kb transcript, we found by in situ hybridization a differential distribution of RAR-beta transcripts in limb bud mesenchyme, in craniofacial mesenchyme and in hindbrain neuroectoderm. In the hindbrain the 4.6 kb mRNA exhibits an anterior boundary of expression at the level of the constriction between rhombomeres 5 and 6. Examination of neural plate stage embryos by in situ hybridization indicates that this boundary of expression is already defined by this stage. In addition to having several RA receptors that are expressed with distinct spatial patterns in the embryo, our data indicate that the expression pattern of transcripts derived from a single receptor gene can also be differentially expressed, thus providing another level for regulating RA action.[1]

References

 
WikiGenes - Universities