Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.
Human fibroblasts have the capacity to release superoxide radicals upon stimulation of an electron transport system similar to the NADPH oxidase of leukocytes. Two components of the NADPH oxidase system, (1) a flavoprotein of 45 kDa which binds diphenylene iodonium (a compound described as a specific inhibitor of the leukocyte NADPH oxidase), and (2) a low-potential cytochrome b, are present in fibroblast membranes. Fibroblasts exhibit these compounds at lower concentrations than do polymorphonuclear leukocytes or B-lymphocytes. The superoxide-generating system is rather uniformly associated with the outer cell membrane, as shown by light and electron microscopy. Superoxide release upon stimulation with various agents was prevented by the addition of micromolar concentrations of diphenylene iodonium, making an NADPH oxidase a likely source.[1]References
- Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Meier, B., Cross, A.R., Hancock, J.T., Kaup, F.J., Jones, O.T. Biochem. J. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg