The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors.

Pentosidine is a recently discovered fluorescent protein cross-link from human extracellular matrix that involves lysyl and arginyl residues in an imidazo (4, 5b) pyridinium ring. Pentosidine could be synthesized in vitro by the reaction of ribose, lysine, and arginine. The potential biological significance of the molecule prompted us to investigate its mechanism of formation from D-ribose and key Maillard intermediates, as well as from other potential precursor sugars. The yield of pentosidine from N alpha-t-Boc-lysine, N alpha-t-Boc-arginine, and D-ribose was highest at pH 9.0 and 65 degrees C, but was unaffected by reactant ratios at alkaline pH suggesting an important role for base catalysis. Ribated Boc-lysine on incubation with N alpha-t-Boc-arginine afforded a fluorescent compound with UV, fluorescence, 1H NMR, and MS properties identical with those from native or synthetic pentosidine. 3-Deoxypentosone, however, was not a major pentosidine precursor. Pentosidine became slowly detectable in bovine serum albumin incubated with 0.25 M and 1.0 M glucose and reached, at 30 days, 13.2 and 17 pmol/mg bovine serum albumin, respectively. Spectroscopical properties of glucose-derived pentosidine were identical with those from ribose-derived pentosidine. Pentosidine formed from glucated Boc-lysine with N alpha-t-Boc-arginine in higher yields than from glucose under standard conditions. Fructose, and unexpectedly ascorbate, also formed pentosidine in similar yields as glucose. The discovery that pentosidine can form not only from pentoses but also from hexoses and ascorbate raises major new questions concerning biochemical pathways of the Maillard reaction in vivo.[1]


WikiGenes - Universities