The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons.

Exposure of neurons to a non-lethal hypoxic stress greatly reduces cell death during subsequent severe ischemia (hypoxic preconditioning, HPC). In organotypic cultures of rat hippocampus, we demonstrate that HPC requires inositol triphosphate (IP3) receptor-dependent Ca2+ release from the endoplasmic reticulum (ER) triggered by increased cytosolic NAD(P)H. Ca2+ chelation with intracellular BAPTA, ER Ca2+ store depletion with thapsigargin, IP3 receptor block with xestospongin, and RNA interference against subtype 1 of the IP3 receptor all blunted the moderate increases in [Ca2+](i) (50-100 nM) required for tolerance induction. Increases in [Ca2+](i) during HPC and neuroprotection following HPC were not prevented with NMDA receptor block or by removing Ca2+ from the bathing medium. Increased NAD(P)H fluorescence in CA1 neurons during hypoxia and demonstration that NADH manipulation increases [Ca2+](i) in an IP3R-dependent manner revealed a primary role of cellular redox state in liberation of Ca2+ from the ER. Blockade of IP3Rs and intracellular Ca2+ chelation prevented phosphorylation of known HPC signaling targets, including MAPK p42/44 (ERK), protein kinase B (Akt) and CREB. We conclude that the endoplasmic reticulum, acting via redox/NADH-dependent intracellular Ca2+ store release, is an important mediator of the neuroprotective response to hypoxic stress.[1]

References

 
WikiGenes - Universities