The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of uptake of 18F-FDG by a follicular human thyroid cancer cell line with mutation-activated K-ras.

Dedifferentiation of thyroid carcinoma is accompanied by increased accumulation of the PET tracer (18)F-FDG. The molecular mechanisms responsible for this phenomenon are poorly understood. Therefore, we studied the regulation of (18)F-FDG uptake by the human follicular thyroid carcinoma cell line ML-1 and the as-yet-unknown oncogene expression of that cell line. The data obtained in ML-1 were compared with those of a well-differentiated thyroid cell line of rat origin (FRTL-5). METHODS: The expression of the thyroid-stimulating hormone (TSH) receptor was investigated by immunocytochemistry, and the expression of the glucose transporters (GLUTs) was determined by Western blotting. Mutation analysis of ML-1 was performed for K-ras codons 12 and 13. The effect of TSH on intracellular cAMP levels was determined by a competitive enzyme immunoassay. Cells were incubated with (18)F-FDG (0.5-1.0 MBq/mL) for 1 h, and tracer uptake was related to protein concentration. The effects of bovine TSH, the cAMP analog (Bu)(2)cAMP, and the phosphatidylinositol-3-kinase (PI3-kinase) inhibitor LY294002 on (18)F-FDG uptake were investigated. RESULTS: The TSH receptor was present in both cell lines. FRTL-5 clearly expressed GLUT-1 and also GLUT-4. In ML-1 only, the expression of GLUT-3 was detected. TSH and (Bu)(2)cAMP had a significant effect on (18)F-FDG uptake or GLUT-1 expression in FRTL-5, but not in ML-1 cells. PI3-kinase inhibition by LY294002 downregulated (18)F-FDG uptake in FRTL-5 by 58% +/- 9% (n = 6) and in ML-1 by 26% +/- 5% (n = 42, both P < 0.05). Mutation analysis of ML-1 cells revealed a Gly12Ser point mutation at codon 12 of the K-ras gene. CONCLUSION: (18)F-FDG uptake in the thyroid carcinoma cell line ML-1 is no longer regulated by TSH or cAMP or mediated by GLUT-1. However, in this cell line, this variable is still governed to some extent by PI3-kinase located downstream to the constitutively active K-ras in the Ras-PI3-kinase-Akt pathway. These data suggest that increases in (18)F-FDG uptake in thyroid carcinomas observed in vivo by PET may reflect activation of intracellular signal transduction cascades by oncogenes.[1]

References

  1. Regulation of uptake of 18F-FDG by a follicular human thyroid cancer cell line with mutation-activated K-ras. Prante, O., Maschauer, S., Fremont, V., Reinfelder, J., Stoehr, R., Szkudlinski, M., Weintraub, B., Hartmann, A., Kuwert, T. J. Nucl. Med. (2009) [Pubmed]
 
WikiGenes - Universities