The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

N-terminal degradation of low molecular weight opioid peptides in human cerebrospinal fluid.

Opioid peptides are present in human cerebrospinal fluid (CSF), and their levels are reported to change in some pathologic conditions. However, less is known about their degradation in CSF. In the present study, human CSF was found to contain aminopeptidase activity which hydrolyzed alanyl-, leucyl- and arginyl-naphthylamides in a ratio of 100:28:27. Twelve CSF samples hydrolyzed alanyl-2-naphthylamide and degraded Met5-enkephalin (N-terminal hydrolysis) at rates of 188 +/- 38 and 420 +/- 79 pmol/min/mL respectively. Further, the distribution of alanyl-naphthylamidase activity in individual samples (39-437 pmol/min/mL) was closely correlated with that of Met5-enkephalin degradation (37-833 pmol/min/mL). Both alanyl-naphthylamidase and enkephalin degradation were optimal at pH 7.0 to 7.5 and were inhibited by aminopeptidase inhibitors amastatin (IC50 = 20 nM), bestatin (4-7 microM) and puromycin (30-35 microM). Conversely, degradation was unaffected by inhibitors of neutral endopeptidase (phosphoramidon), carboxypeptidase N (MERGETPA) or angiotensin converting enzyme (captopril). The Km of Met5-enkephalin for the CSF aminopeptidase activity was 201 +/- 19 microM (N = 4). Rates of hydrolysis of the Tyr1-Gly2 bond of larger opioid peptides decreased with increasing peptide length. Pooled, concentrated CSF hydrolyzed Leu5-enkephalin, dynorphin A fragments [1-7], [1-10] and [1-13] and dynorphin A at rates of 2.05 +/- 0.27, 1.27 +/- 0.18, 0.94 +/- 0.06, 0.55 +/- 0.14 and 0.16 +/- 0.03 nmol/min/mL respectively. When analyzed by rocket-immunoelectrophoresis against antisera to aminopeptidase M (EC 3.4.11.2), the concentrated CSF formed an immunoprecipitate which could be stained histochemically for alanyl-naphthylamidase activity. These data are consistent with a significant role for aminopeptidase M activity in the degradation of low molecular weight opioid peptides in human CSF.[1]

References

  1. N-terminal degradation of low molecular weight opioid peptides in human cerebrospinal fluid. Benter, I.F., Hirsh, E.M., Tuchman, A.J., Ward, P.E. Biochem. Pharmacol. (1990) [Pubmed]
 
WikiGenes - Universities