The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mutagenicity of Maillard reaction products from D-glucose-amino acid mixtures and possible roles of active oxygens in the mutagenicity.

The mutagenicity for Salmonella typhimurium TA100 without S9 mix of Maillard reaction products (MRP) obtained from equimolar amounts of glucose and amino acids under different pHs was investigated. MRP derived from arginine and lysine exhibited the strongest mutagenicity, and weaker mutagenicity was shown by the mixtures with alanine, serine, threonine and monosodium glutamate. MRP from proline and cysteine had no detectable mutagenicity. Furthermore, glucose-arginine and glucose-lysine reaction mixtures, which presented a marked mutagenicity, showed pH- and browning intensity-dependent expression of their mutagenic activities. The mutagenicity of MRP, especially glucose-arginine and glucose-lysine mixtures, was significantly suppressed by active oxygen scavengers such as cysteine, mannitol, alpha-tocopherol, catalase and superoxide dismutase (SOD) and reducing agents such as sodium bisulfite and glutathione. Among these desmutagenic factors tested, cysteine, catalase, sodium bisulfite and glutathione had higher desmutagenic activities than the others. Accordingly, it is assumed that the mutagenicity of MRP is due to the direct action of low-molecular-weight compounds such as carbonyls and heterocyclics produced by the Maillard reaction and is enhanced by active oxygens, especially singlet oxygen and hydrogen peroxide derived from their autoxidation.[1]


WikiGenes - Universities