The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cellobiose Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis.

Cellobiose is produced from cellulose using specific bacterial enzymes, and is hydrolyzed into glucose by the enzymes cellobiosidase and cellulase. In this study, we examined the effects of cellobiose on colonic mucosal damage in a dextran sulfate sodium (DSS) colitis model. BALB/c mice were divided into two groups. In the first group, the mice were fed 3.5% DSS mixed with normal chow. In the second group, the mice were fed 3.5% DSS plus 6.0 or 9.0% (weight/weight) cellobiose mixed with normal chow. The development of colitis was assessed on day 21. Mucosal cytokine expression was analyzed by RT-PCR. Body weight loss was significantly attenuated in the 9.0% cellobiose-fed DSS mice as compared to the DSS mice. Colonic weight/length ratio, a maker of tissue edema, was significantly higher in the DSS mice than in the 9.0% cellobiose-fed DSS mice. The disease activity index and histological colitis score were also significantly higher in the DSS mice than in the 9.0% cellobiose-fed DSS mice. Mucosal mRNA expression for IL-1beta, TNF-alpha, IL-17 and IP-10 were markedly reduced in the 9.0% cellobiose-fed DSS mice. In conclusion, a preventive effect of cellobiose against DSS colitis suggests its clinical use for inflammatory bowel diseases patients.[1]

References

  1. Cellobiose Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis. Nishimura, T., Andoh, A., Hashimoto, T., Kobori, A., Tsujikawa, T., Fujiyama, Y. J. Clin. Biochem. Nutr (2010) [Pubmed]
 
WikiGenes - Universities