The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte.

The acetaldehyde-xanthine oxidase system in the presence and absence of myeloperoxidase (MPO) and chloride has been employed as a model of the oxygen-dependent antimicrobial systems of the PMN. The unsupplemented xanthine oxidase system was bactericidal at relatively high acetaldehyde concentrations. The bactericidal activity was inhibited by superoxide dismutase (SOD), catalase, the hydroxyl radical (OH.) scavengers, mannitol and benzoate, the singlet oxygen (1O2) quenchers, azide, histidine, and 1,4-diazabicyclo[2,2,2]octane (DABCO) and by the purines, xanthine, hypoxanthine, and uric acid. The latter effect may account for the relatively weak bactericidal activity of the xanthine oxidase system when purines are employed as substrate. A white, carotenoid-negative mutant strain of Sarcina lutea was more susceptible to the acetaldehyde-xanthine oxidase system than was the yellow, carotenoid-positive parent strain. Carotenoid pigments are potent 1O2 quenchers. The xanthine oxidase system catalyzes the conversion of 2,5-diphenylfuran to cis-dibenzoylethylene, a reaction which can occur by a 1O2 mechanism. This conversion is inhibited by SOD, catalase, azide, histidine, DABCO, xanthine, hypoxanthine, and uric acid but is only slightly inhibited by mannitol and benzoate. The addition of MPO and chloride to the acetaldehyde-xanthine oxidase system greatly increases bactericidal activity; the minimal effective acetaldehyde concentration is decreased 100-fold and the rate and extent of bacterial killing is increased. The bactericidal activity of the MPO-supplemented system is inhibited by catalase, benzoate, azide, DABCO, and histidine but not by SOD or mannitol. Thus, the acetaldehyde-xanthine oxidase system which like phagocytosing PMNs generates superoxide (O.2-) and hydrogen peroxide, is bactericidal both in the presence and absence of MPO and chloride. The MPO-supplemented system is considerably more potent; however, when MPO is absent, bactericidal activity is observed which may be mediated by the interaction of H2O2 and O.2- to form OH. and 1O2.[1]

References

 
WikiGenes - Universities