The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Silencing of Hypoxia-Inducible Factor-1{alpha} Gene Attenuated Angiotensin II-Induced Renal Injury in Sprague-Dawley Rats.

Although it has been shown that upregulation of hypoxia-inducible factor (HIF)-1α is protective in acute ischemic renal injury, long-term overactivation of HIF-1α is implicated to be injurious in chronic kidney diseases. Angiotensin II (Ang II) is a well-known pathogenic factor producing chronic renal injury and has also been shown to increase HIF-1α. However, the contribution of HIF-1α to Ang II-induced renal injury has not been evidenced. The present study tested the hypothesis that HIF-1α mediates Ang II-induced renal injury in Sprague-Dawley rats. Chronic renal injury was induced by Ang II infusion (200 ng/kg per minute) for 2 weeks in uninephrectomized rats. Transfection of vectors expressing HIF-1α small hairpin RNA into the kidneys knocked down HIF-1α gene expression by 70%, blocked Ang II-induced HIF-1α activation, and significantly attenuated Ang II-induced albuminuria, which was accompanied by inhibition of Ang II-induced vascular endothelial growth factor, a known glomerular permeability factor, in glomeruli. HIF-1α small hairpin RNA also significantly improved the glomerular morphological damage induced by Ang II. Furthermore, HIF-1α small hairpin RNA blocked Ang II-induced upregulation of collagen and α-smooth muscle actin in tubulointerstitial region. There was no difference in creatinine clearance and Ang II-induced increase in blood pressure. HIF-1α small hairpin RNA had no effect on Ang II-induced reduction in renal blood flow and hypoxia in the kidneys. These data suggested that overactivation of HIF-1α-mediated gene regulation in the kidney is a pathogenic pathway mediating Ang II-induced chronic renal injuries, and normalization of overactivated HIF-1α may be used as a treatment strategy for chronic kidney damages associated with excessive Ang II.[1]


  1. Silencing of Hypoxia-Inducible Factor-1{alpha} Gene Attenuated Angiotensin II-Induced Renal Injury in Sprague-Dawley Rats. Zhu, Q., Wang, Z., Xia, M., Li, P.L., Van Tassell, B.W., Abbate, A., Dhaduk, R., Li, N. Hypertension (2011) [Pubmed]
WikiGenes - Universities