The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.

Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). Excision and replacement of these intermediates is initiated by DNA glycosylases such as thymine-DNA glycosylase (TDG), methyl-binding domain protein 4 (MBD4) and single-strand specific monofunctional uracil-DNA glycosylase 1 in the base excision repair pathway. Here, we report detailed biochemical and structural characterization of human MBD4 which contains mismatch-specific TDG activity. Full-length as well as catalytic domain (residues 426-580) of human MBD4 (MBD4(cat)) can remove 5hmU when opposite to G with good efficiency. Here, we also report six crystal structures of human MBD4(cat): an unliganded form and five binary complexes with duplex DNA containing a T•G, 5hmU•G or AP•G (apurinic/apyrimidinic) mismatch at the target base pair. These structures reveal that MBD4(cat) uses a base flipping mechanism to specifically recognize thymine and 5hmU. The recognition mechanism of flipped-out 5hmU bases in MBD4(cat) active site supports the potential role of MBD4, together with TDG, in maintenance of genome stability and active DNA demethylation in mammals.[1]

References

  1. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Moréra, S., Grin, I., Vigouroux, A., Couvé, S., Henriot, V., Saparbaev, M., Ishchenko, A.A. Nucleic Acids Res. (2012) [Pubmed]
 
WikiGenes - Universities