The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pyridoxine-derived B6 vitamers and pyridoxal 5'-phosphate-binding proteins in cytosolic and nuclear fractions of HTC cells.

The nuclear fraction of rat hepatoma-derived HTC cells contained approximately 8% of the total cellular pyridoxal 5'-phosphate. HTC cells were able to metabolize [3H]pyridoxine to coenzymatically active pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate. As HTC cells did not have any demonstrable pyridoxine-5'-phosphate oxidase activity, the conversion of pyridoxine to pyridoxal 5'-phosphate must have taken place by a nonconventional route. The ratio of pyridoxal 5'-phosphate to pyridoxamine 5'-phosphate in the nonnuclear fraction of HTC cells was approximately 1:1, whereas in the nuclear fraction it was approximately 17:1, indicating that there was selective acquisition of pyridoxal 5'-phosphate by the nucleus. With the aid of a monoclonal antibody specific for the 5'-phosphopyridoxyl group, it was shown that there was one major pyridoxal 5'-phosphate-binding protein in a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-resolved nucleoplasmic extract of HTC cells. This finding was confirmed by radioautography of an SDS-PAGE-resolved nucleoplasmic extract obtained from cells grown in a medium containing [3H]pyridoxine. Isoelectric focusing followed by SDS-PAGE also indicated the presence of one major pyridoxal 5'-phosphate-binding protein in the nucleoplasmic extract of HTC cells having a relatively high isoelectric point (approximately 7). Data were obtained indicating that the protein might exist in a higher molecular weight form, probably a dimer. Currently, these findings constitute virtually all of the available information on vitamin B6 and the cell nucleus.[1]

References

 
WikiGenes - Universities