The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif.

The muE3 motif within the immunoglobulin heavy-chain enhancer is required for full enhancer activity and is known to bind one, or perhaps a family, of related ubiquitous nuclear proteins. Here, we present the isolation of a cDNA that encodes an apparently novel microE3-binding protein designated TFE3. The major open reading frame of the cDNA predicts a protein of 59 kD, with a leucine zipper situated adjacent to an myc-related motif that has been proposed to assume a helix-loop-helix structure. Both of these motifs have been shown (for other proteins) to facilitate protein-protein interactions and DNA binding. Expression of the cDNA in 3T3 cells stimulates transcription from an artificial promoter consisting of four muE3 sites linked to a TATA box and also augments transcription of a reporter gene when it is linked to multiple copies of a particular heavy-chain enhancer subfragment but not when it is linked to the intact enhancer. Using GAL4 fusion proteins, we mapped a strong transcription activation domain within TFE3 that is distinct from the leucine zipper and helix-loop-helix motifs and includes a potential negative amphipathic helix. Like the other muE3-binding proteins detected in nuclear extracts, in vitro-synthesized TFE3 also binds to the USF/MLTF site found in the adenovirus major late promoter.[1]


WikiGenes - Universities