The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

TFE3  -  transcription factor binding to IGHM...

Homo sapiens

Synonyms: BHLHE33, Class E basic helix-loop-helix protein 33, RCCP2, RCCX1, TFEA, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of TFE3


High impact information on TFE3

  • Most cloned cells of MITF transfectants exhibited dendritic morphology and expressed melanogenic markers, but such properties were not observed in cells transfected with closely related TFE3 cDNA [5].
  • In contrast, the BRG1-BAF155 complex does not interact or function with two unrelated transcription factors, TFE3 and NF-kappaB [6].
  • Binding of both TFE3 and the Smad proteins to their cognate sequences is indispensable for TGF-beta-inducible activation of the PE2 promoter [7].
  • Hence, TFE3 is an important transcription factor in at least one TGF-beta-activated signal transduction pathway [7].
  • Binding by TFEB and TFE3 to related, but different, naturally occurring DNA target sequences was observed with distinct binding preferences [8].

Biological context of TFE3


Anatomical context of TFE3

  • Mitf also has been found-and TFE3 has been suggested-to modulate age-dependent changes in osteoclast function [12].
  • In addition, the expression of PSF-TFE3 in normal renal proximal tubular epithelial cells from where such tumors originate leads to dedifferentiation and loss of some key functional proteins, which may reflect an initial step in the multistep process of tumor development [13].
  • We have localized human TFE3 to the proximal short arm of the X chromosome using a somatic cell hybrid panel [14].
  • We report a case of incidentally discovered ASPS in the uterine cervix of a 39-year-old woman that exhibited immunoreactivity for TFE3, a recently described marker of ASPS [15].
  • Overexpression of TFE3 or TFEB in 3T3 cells activated endogenous and reporter E-cadherin expression [16].

Associations of TFE3 with chemical compounds

  • The translocation is predicted to result in the fusion of the N-terminal region of the PRCC protein, which includes a proline-rich domain, to the entire TFE3 protein [17].

Physical interactions of TFE3

  • TFE3 exhibited cooperative DNA binding with Smad proteins, whereas no cooperativity was observed between E47 and Smads [11].

Enzymatic interactions of TFE3


Regulatory relationships of TFE3

  • TFE3 can only stimulate enhancer activity in the presence of ITF-1 or in the absence of a microE5 motif [19].

Other interactions of TFE3


Analytical, diagnostic and therapeutic context of TFE3


  1. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Beckmann, H., Su, L.K., Kadesch, T. Genes Dev. (1990) [Pubmed]
  2. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Davis, I.J., Hsi, B.L., Arroyo, J.D., Vargas, S.O., Yeh, Y.A., Motyckova, G., Valencia, P., Perez-Atayde, A.R., Argani, P., Ladanyi, M., Fletcher, J.A., Fisher, D.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Argani, P., Lui, M.Y., Couturier, J., Bouvier, R., Fournet, J.C., Ladanyi, M. Oncogene (2003) [Pubmed]
  4. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Argani, P., Lal, P., Hutchinson, B., Lui, M.Y., Reuter, V.E., Ladanyi, M. Am. J. Surg. Pathol. (2003) [Pubmed]
  5. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Tachibana, M., Takeda, K., Nobukuni, Y., Urabe, K., Long, J.E., Meyers, K.A., Aaronson, S.A., Miki, T. Nat. Genet. (1996) [Pubmed]
  6. Functional selectivity of recombinant mammalian SWI/SNF subunits. Kadam, S., McAlpine, G.S., Phelan, M.L., Kingston, R.E., Jones, K.A., Emerson, B.M. Genes Dev. (2000) [Pubmed]
  7. Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Hua, X., Liu, X., Ansari, D.O., Lodish, H.F. Genes Dev. (1998) [Pubmed]
  8. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Fisher, D.E., Carr, C.S., Parent, L.A., Sharp, P.A. Genes Dev. (1991) [Pubmed]
  9. Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Weterman, M.A., Wilbrink, M., Geurts van Kessel, A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Kuiper, R.P., Schepens, M., Thijssen, J., van Asseldonk, M., van den Berg, E., Bridge, J., Schuuring, E., Schoenmakers, E.F., van Kessel, A.G. Hum. Mol. Genet. (2003) [Pubmed]
  11. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. Grinberg, A.V., Kerppola, T. J. Biol. Chem. (2003) [Pubmed]
  12. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Motyckova, G., Weilbaecher, K.N., Horstmann, M., Rieman, D.J., Fisher, D.Z., Fisher, D.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  13. Role of PSF-TFE3 oncoprotein in the development of papillary renal cell carcinomas. Mathur, M., Samuels, H.H. Oncogene (2007) [Pubmed]
  14. The gene encoding human TFE3, a transcription factor that binds the immunoglobulin heavy-chain enhancer, maps to Xp11.22. Henthorn, P.S., Stewart, C.C., Kadesch, T., Puck, J.M. Genomics (1991) [Pubmed]
  15. TFE3 immunoreactivity in alveolar soft part sarcoma of the uterine cervix: case report. Roma, A.A., Yang, B., Senior, M.E., Goldblum, J.R. Int. J. Gynecol. Pathol. (2005) [Pubmed]
  16. Renal carcinoma-associated transcription factors TFE3 and TFEB are leukemia inhibitory factor-responsive transcription activators of E-cadherin. Huan, C., Sashital, D., Hailemariam, T., Kelly, M.L., Roman, C.A. J. Biol. Chem. (2005) [Pubmed]
  17. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Sidhar, S.K., Clark, J., Gill, S., Hamoudi, R., Crew, A.J., Gwilliam, R., Ross, M., Linehan, W.M., Birdsall, S., Shipley, J., Cooper, C.S. Hum. Mol. Genet. (1996) [Pubmed]
  18. Molecular cloning of cDNA encoding a human TFEC isoform, a newly identified transcriptional regulator. Yasumoto, K., Shibahara, S. Biochim. Biophys. Acta (1997) [Pubmed]
  19. Modulation of the IgH enhancer's cell type specificity through a genetic switch. Ruezinsky, D., Beckmann, H., Kadesch, T. Genes Dev. (1991) [Pubmed]
  20. Synergism between transcription factors TFE3 and Smad3 in transforming growth factor-beta-induced transcription of the Smad7 gene. Hua, X., Miller, Z.A., Benchabane, H., Wrana, J.L., Lodish, H.F. J. Biol. Chem. (2000) [Pubmed]
  21. Translocation carcinomas of the kidney after chemotherapy in childhood. Argani, P., Laé, M., Ballard, E.T., Amin, M., Manivel, C., Hutchinson, B., Reuter, V.E., Ladanyi, M. J. Clin. Oncol. (2006) [Pubmed]
  22. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Clark, J., Lu, Y.J., Sidhar, S.K., Parker, C., Gill, S., Smedley, D., Hamoudi, R., Linehan, W.M., Shipley, J., Cooper, C.S. Oncogene (1997) [Pubmed]
  23. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Argani, P., Antonescu, C.R., Illei, P.B., Lui, M.Y., Timmons, C.F., Newbury, R., Reuter, V.E., Garvin, A.J., Perez-Atayde, A.R., Fletcher, J.A., Beckwith, J.B., Bridge, J.A., Ladanyi, M. Am. J. Pathol. (2001) [Pubmed]
  24. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Ladanyi, M., Lui, M.Y., Antonescu, C.R., Krause-Boehm, A., Meindl, A., Argani, P., Healey, J.H., Ueda, T., Yoshikawa, H., Meloni-Ehrig, A., Sorensen, P.H., Mertens, F., Mandahl, N., van den Berghe, H., Sciot, R., Cin, P.D., Bridge, J. Oncogene (2001) [Pubmed]
  25. The genomic organization of the human transcription factor 3 (TFE3) gene. Macchi, P., Notarangelo, L., Giliani, S., Strina, D., Repetto, M., Sacco, M.G., Vezzoni, P., Villa, A. Genomics (1995) [Pubmed]
  26. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Argani, P., Antonescu, C.R., Couturier, J., Fournet, J.C., Sciot, R., Debiec-Rychter, M., Hutchinson, B., Reuter, V.E., Boccon-Gibod, L., Timmons, C., Hafez, N., Ladanyi, M. Am. J. Surg. Pathol. (2002) [Pubmed]
WikiGenes - Universities