The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5'-terminal base-free deoxyribose 5-phosphates.

Escherichia coli endonuclease IV hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free deoxyribose. It also hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free 2',3'-unsaturated sugar produced by nicking 3' to an AP (apurinic or apyrimidinic) site by beta-elimination; this explains why the unproductive end produced by beta-elimination is converted by the enzyme into a 3'-OH end able to prime DNA synthesis. The action of E. coli endonuclease IV on an internal AP site is more complex: in a first step the C(3')-O-P bond 5' to the AP site is hydrolysed, but in a second step the 5'-terminal base-free deoxyribose 5'-phosphate is lost. This loss is due to a spontaneous beta-elimination reaction in which the enzyme plays no role. The extreme lability of the C(3')-O-P bond 3' to a 5'-terminal AP site contrasts with the relative stability of the same bond 3' to an internal AP site; in the absence of beta-elimination catalysts, at 37 degrees C the half-life of the former is about 2 h and that of the latter 200 h. The extreme lability of a 5'-terminal AP site means that, after nicking 5' to an AP site with an AP endonuclease, in principle no 5'----3' exonuclease is needed to excise the AP site: it falls off spontaneously. We have repaired DNA containing AP sites with an AP endonuclease (E. coli endonuclease IV or the chromatin AP endonuclease from rat liver), a DNA polymerase devoid of 5'----3' exonuclease activity (Klenow polymerase or rat liver DNA polymerase beta) and a DNA ligase. Catalysts of beta-elimination, such as spermine, can drastically shorten the already brief half-life of a 5'-terminal AP site; it is what very probably happens in the chromatin of eukaryotic cells. E. coli endonuclease IV also probably participates in the repair of strand breaks produced by ionizing radiations: as E. coli endonuclease VI/exonuclease III, it is a 3'-phosphoglycollatase and also a 3'-phosphatase. The 3'-phosphatase activity of E. coli endonuclease VI/exonuclease III and E. coli endonuclease IV can also be useful when the AP site has been excised by a beta delta-elimination reaction.[1]

References

 
WikiGenes - Universities