The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

DEOXYRIBOSE     3,4,5-trihydroxypentanal

Synonyms: Thyminose, ACMC-209l6h, NSC-76307, AC1L1VXW, NSC76307, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of DEOXYRIBOSE

 

High impact information on DEOXYRIBOSE

 

Chemical compound and disease context of DEOXYRIBOSE

  • The different kinetic properties toward AZT-MP between the eukaryotic TmpKs and E. coli TmpK can be rationalized by the different ways in which these enzymes stabilize the presumed transition state and the different manner in which a carboxylic acid side chain in the P loop interacts with the deoxyribose of the monophosphate [2].
  • Escherichia coli contains multiple enzymes that hydrolyze deoxyribose fragments (phosphoglycolaldehyde, PGA) from the 3' termini of a synthetic DNA substrate [11].
  • Escherichia coli [formamidopyrimidine]DNA glycosylase catalyses the nicking of both the phosphodiester bonds 3' and 5' of apurinic or apyrimidinic sites in DNA so that the base-free deoxyribose is replaced by a gap limited by 3'-phosphate and 5'-phosphate ends [12].
  • This compound is a guanosine analogue containing a 2',3'-unsaturation in its planar carbocyclic deoxyribose ring that acts on HIV-1 reverse transcriptase (RT(WT)) as a molecular target, resulting in chain termination of DNA synthesis [13].
  • Taken together with previous results showing hypersensitivity of A-T cells to ionizing radiation, bleomycin and neocarzinostatin, these data indicate that the critical DNA lesion in A-T cells is a strand break caused by deoxyribose destruction following the action of free radicals targeted into the DNA [14].
 

Biological context of DEOXYRIBOSE

 

Anatomical context of DEOXYRIBOSE

 

Associations of DEOXYRIBOSE with other chemical compounds

 

Gene context of DEOXYRIBOSE

 

Analytical, diagnostic and therapeutic context of DEOXYRIBOSE

  • Evidence for .OH generation was then sought using two different spin-trapping agents (5.5 dimethyl-pyrroline-1-oxide or N-t-butyl-alpha-phenylnitrone), as well as the deoxyribose oxidation assay [34].
  • AP sites are corrected via incision by AP endonucleases, removal of deoxyribose 5-phosphate, repair synthesis, and ligation [35].
  • Partial depurination of d-ApA produced two UV260nm-absorbing isomers, d-SpA and d-ApS (where S represents the depurinated deoxyribose sugar), that provided simple model compounds with which to examine, by HPLC, the response of nucleases to phosphodiester bonds flanked 3' or 5' by an apurinic site [36].
  • Bleomycin is an antibiotic used in cancer chemotherapy for its ability to achieve both single- and double-strand cleavage of DNA through abstraction of the deoxyribose C4'-H [37].
  • By contrast, a deoxyribose G5 variant that can undergo only the first of the two folding transitions gives a complex titration curve [38].

References

  1. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Sherman, S.E., Gibson, D., Wang, A.H., Lippard, S.J. Science (1985) [Pubmed]
  2. Structural basis for efficient phosphorylation of 3'-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Lavie, A., Ostermann, N., Brundiers, R., Goody, R.S., Reinstein, J., Konrad, M., Schlichting, I. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. Palaniyar, N., Nadesalingam, J., Clark, H., Shih, M.J., Dodds, A.W., Reid, K.B. J. Biol. Chem. (2004) [Pubmed]
  4. The stereoselective enzymatic synthesis of 9-beta-D-2'-deoxyribofuranosyl 1-deazapurine. Betbeder, D., Hutchinson, D.W., Richards, A.O. Nucleic Acids Res. (1989) [Pubmed]
  5. Blockage of 2-deoxy-D-ribose-induced angiogenesis with rapamycin counteracts a thymidine phosphorylase-based escape mechanism available for colon cancer under 5-fluorouracil therapy. Seeliger, H., Guba, M., Koehl, G.E., Doenecke, A., Steinbauer, M., Bruns, C.J., Wagner, C., Frank, E., Jauch, K.W., Geissler, E.K. Clin. Cancer Res. (2004) [Pubmed]
  6. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E., Tainer, J.A. Nature (1996) [Pubmed]
  7. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Matsumoto, Y., Kim, K. Science (1995) [Pubmed]
  8. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. 1953. Watson, J.D., Crick, F.H. JAMA (1993) [Pubmed]
  9. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. Wilson, T.M., Vaisman, A., Martomo, S.A., Sullivan, P., Lan, L., Hanaoka, F., Yasui, A., Woodgate, R., Gearhart, P.J. J. Exp. Med. (2005) [Pubmed]
  10. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. Messmer, B.T., Messmer, D., Allen, S.L., Kolitz, J.E., Kudalkar, P., Cesar, D., Murphy, E.J., Koduru, P., Ferrarini, M., Zupo, S., Cutrona, G., Damle, R.N., Wasil, T., Rai, K.R., Hellerstein, M.K., Chiorazzi, N. J. Clin. Invest. (2005) [Pubmed]
  11. Multiple DNA repair activities for 3'-deoxyribose fragments in Escherichia coli. Bernelot-Moens, C., Demple, B. Nucleic Acids Res. (1989) [Pubmed]
  12. Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli [formamidopyrimidine]DNA glycosylase. Bailly, V., Verly, W.G., O'Connor, T., Laval, J. Biochem. J. (1989) [Pubmed]
  13. Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT with carbovir triphosphate. Ray, A.S., Yang, Z., Shi, J., Hobbs, A., Schinazi, R.F., Chu, C.K., Anderson, K.S. Biochemistry (2002) [Pubmed]
  14. Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Shiloh, Y., Tabor, E., Becker, Y. Carcinogenesis (1983) [Pubmed]
  15. Glutathione, cell proliferation, and 1,3-bis-(2-chloroethyl)-1-nitrosourea in K562 leukemia. Frischer, H., Kennedy, E.J., Chigurupati, R., Sivarajan, M. J. Clin. Invest. (1993) [Pubmed]
  16. Bipartite substrate discrimination by human nucleotide excision repair. Hess, M.T., Schwitter, U., Petretta, M., Giese, B., Naegeli, H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  17. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Becana, M., Klucas, R.V. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Popoff, S.C., Spira, A.I., Johnson, A.W., Demple, B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  19. Preferential hydroxylation by the chemical nuclease meso-tetrakis-(4-N-methylpyridiniumyl)porphyrinatomanganeseIII pentaacetate/KHSO5 at the 5' carbon of deoxyriboses on both 3' sides of three contiguous A.T base pairs in short double-stranded oligonucleotides. Pitié, M., Pratviel, G., Bernadou, J., Meunier, B. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  20. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. Winterbourn, C.C., Stern, A. J. Clin. Invest. (1987) [Pubmed]
  21. Suppression of thymidine phosphorylase-mediated angiogenesis and tumor growth by 2-deoxy-L-ribose. Uchimiya, H., Furukawa, T., Okamoto, M., Nakajima, Y., Matsushita, S., Ikeda, R., Gotanda, T., Haraguchi, M., Sumizawa, T., Ono, M., Kuwano, M., Kanzaki, T., Akiyama, S. Cancer Res. (2002) [Pubmed]
  22. Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins alpha 5 beta 1 and alpha V beta 3. Hotchkiss, K.A., Ashton, A.W., Schwartz, E.L. J. Biol. Chem. (2003) [Pubmed]
  23. Mechanism of mutation on DNA templates containing synthetic abasic sites: study with a double strand vector. Takeshita, M., Eisenberg, W. Nucleic Acids Res. (1994) [Pubmed]
  24. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation. Miller, R.A., Britigan, B.E. J. Clin. Invest. (1995) [Pubmed]
  25. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Rydberg, B., Game, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  26. Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material. Shibata, T., Nishinaka, T., Mikawa, T., Aihara, H., Kurumizaka, H., Yokoyama, S., Ito, Y. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  27. X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase. Xu, Y., Sellam, O., Moréra, S., Sarfati, S., Biondi, R., Véron, M., Janin, J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  28. Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Nishino, I., Spinazzola, A., Papadimitriou, A., Hammans, S., Steiner, I., Hahn, C.D., Connolly, A.M., Verloes, A., Guimarães, J., Maillard, I., Hamano, H., Donati, M.A., Semrad, C.E., Russell, J.A., Andreu, A.L., Hadjigeorgiou, G.M., Vu, T.H., Tadesse, S., Nygaard, T.G., Nonaka, I., Hirano, I., Bonilla, E., Rowland, L.P., DiMauro, S., Hirano, M. Ann. Neurol. (2000) [Pubmed]
  29. Excision of C-4'-oxidized deoxyribose lesions from double-stranded DNA by human apurinic/apyrimidinic endonuclease (Ape1 protein) and DNA polymerase beta. Xu, Y.J., Kim, E.Y., Demple, B. J. Biol. Chem. (1998) [Pubmed]
  30. DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. García-Díaz, M., Domínguez, O., López-Fernández, L.A., de Lera, L.T., Saníger, M.L., Ruiz, J.F., Párraga, M., García-Ortiz, M.J., Kirchhoff, T., del Mazo, J., Bernad, A., Blanco, L. J. Mol. Biol. (2000) [Pubmed]
  31. Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. Rashid, N., Imanaka, H., Fukui, T., Atomi, H., Imanaka, T. J. Bacteriol. (2004) [Pubmed]
  32. p53 protein activates the transcription of human proliferating cell nuclear antigen in response to 4-nitroquinoline N-oxide treatment. Li, Y., Wang, L., Li, S., Guo, T., Guo, X., Yan, P., Chen, Y., Wang, L., Lu, C. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  33. The primary structure of Escherichia coli K12 2-deoxyribose 5-phosphate aldolase. Nucleotide sequence of the deoC gene and the amino acid sequence of the enzyme. Valentin-Hansen, P., Boëtius, F., Hammer-Jespersen, K., Svendsen, I. Eur. J. Biochem. (1982) [Pubmed]
  34. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. Coffman, T.J., Cox, C.D., Edeker, B.L., Britigan, B.E. J. Clin. Invest. (1990) [Pubmed]
  35. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Bennett, R.A., Wilson, D.M., Wong, D., Demple, B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  36. Selective hydrolysis by exo- and endonucleases of phosphodiester bonds adjacent to an apurinic site. Weinfeld, M., Liuzzi, M., Paterson, M.C. Nucleic Acids Res. (1989) [Pubmed]
  37. Spectroscopic studies of the interaction of ferrous bleomycin with DNA. Kemsley, J.N., Zaleski, K.L., Chow, M.S., Decker, A., Shishova, E.Y., Wasinger, E.C., Hedman, B., Hodgson, K.O., Solomon, E.I. J. Am. Chem. Soc. (2003) [Pubmed]
  38. Thermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study. Hammann, C., Cooper, A., Lilley, D.M. Biochemistry (2001) [Pubmed]
 
WikiGenes - Universities