Bromoconduritol treatment delays intracellular transport of secretory glycoproteins in human hepatoma cell cultures.
Previous studies in our laboratory have shown that specific glycan structures are required for the normal secretion of some glycoproteins. Bromoconduritol is known to inhibit the removal of the innermost glucose moiety from the Glc3Man9(GlcNAc)2 precursor of N-linked glycoproteins. We have used this inhibitor to investigate the possible role of glycan structure in the intracellular transport of secretory glycoproteins of Hep G2 cultures. Cells were pretreated with 1mM bromoconduritol for 1h, pulsed with [35S]-methionine for 10min and chased for varying intervals. Specific glycoproteins and albumin were immunoprecipitated from the cell lysate and medium. We found that bromoconduritol-treatment inhibited the secretion of alpha 1-protease inhibitor, ceruloplasmin, alpha 2-macroglobulin, transferrin, and alpha-fetoprotein. Apparently, the glucosylated high-mannose intermediate is not secreted, since glycoproteins in the medium are of complex form. We conclude that the removal of the innermost glucose residue from secretory glycoprotein represents an important regulatory step in the intracellular transport pathway.[1]References
- Bromoconduritol treatment delays intracellular transport of secretory glycoproteins in human hepatoma cell cultures. Yeo, K.T., Yeo, T.K., Olden, K. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg