The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Polymorphism of pseudocholinesterase in Torpedo marmorata tissues: comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase.

We report the existence, in Torpedo marmorata tissues, of a cholinesterase species (sensitive to 10(-5) M eserine) that differs from acetylcholinesterase (AChE, EC in several respects: (a) The enzyme hydrolyzes butyrylthiocholine (BuSCh) at about 30% of the rate at which it hydrolyzes acetylthiocholine (AcSCh), whereas Torpedo AChE does not show any activity on BuSCh. (b) It is not inhibited by 10(-5) M BW 284C51, but rapidly inactivated by 10(-8) M diisopropylfluorophosphonate. (c) It does not exhibit inhibition by excess substrate up to 5 X 10(-3) M AcSCh. (d) It does not cross-react with anti-AChE antibodies raised against purified Torpedo AChE. This enzyme is obviously homologous to the "nonspecific" or pseudocholinesterase (pseudo-ChE, EC that exists in other species, although it is closer to "true" AChE than classic pseudo-ChE in several respects. Thus, it shows the highest Vmax with acetyl-, and not propionyl- or butyrylthiocholine, and it is not specifically sensitive to ethopropazine. Pseudo-ChE is apparently absent from the electric organs, but represents the only cholinesterase species in the heart ventricle. Pseudo-ChE and AChE coexist in the spinal cord and in blood plasma, where they contribute to AcSCh hydrolysis in comparable proportions. Pseudo-ChE exists in several molecular forms, including collagen-tailed forms, which can be considered as homologous to those of AChE. In the heart the major component of pseudo-ChE appears to be a soluble monomeric form (G1). This form is inactivated by Triton X-100 within days.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


WikiGenes - Universities