The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase.

The spectral shift from 420 to 338 nm when pure bacterial D-amino acid transaminase binds D-amino acid substrates is also exhibited in part by high concentrations of L-amino acids (L-alanine and L-glutamate) but not by simple dicarboxylic acids or monoamines. Slow processing of L-alanine to D-alanine was observed both by coupled enzymatic assays using D-amino acid oxidase and by high pressure liquid chromatography analysis employing an optically active chromophore (Marfey's reagent). When the acceptor for L-alanine was alpha-ketoglutarate, D-glutamate was also formed. This minor activity of the transaminase involved both homologous (L-alanine and D-alanine) and heterologous (L-alanine and D-glutamate) substrate pairs and was a function of the nature of the keto acid acceptor. In the presence of alpha-ketoisovalerate, DL-alanine was almost completely processed to D-valine; within the limits of the assay no L-valine was detected. With alpha-ketoisocaproate, 90% of the DL-alanine was converted to D-leucine. In the mechanism of this transaminase reaction, there may be more stereoselective constraints for the protonation of the quinonoid intermediate during the second half-reaction of the transamination reaction, i.e. the donation of the amino group from the pyridoxamine 5'-phosphate coenzyme to a second keto acid acceptor, than during removal of the alpha proton in the initial steps of the reaction pathway. Thus, with this D-amino acid transaminase, the discrete steps of transamination ensure fidelity of the stereospecificity of reaction pathway.[1]


  1. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase. Martínez del Pozo, A., Merola, M., Ueno, H., Manning, J.M., Tanizawa, K., Nishimura, K., Soda, K., Ringe, D. J. Biol. Chem. (1989) [Pubmed]
WikiGenes - Universities