The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nephrotoxicity of S-(2-chloroethyl)glutathione in the Fischer rat: evidence for gamma-glutamyltranspeptidase-independent uptake by the kidney.

S-(2-chloroethyl)glutathione (CEG; 270 mumol/kg) produced renal lesions that were confined to the proximal tubules of the outer stripe of the outer medulla and were similar to those lesions produced by the cysteine analog S-(2-chloroethyl)cysteine or by the nephrotoxic glutathione (GSH) adduct of 2-bromohydroquinone. These histopathologic changes in the kidney were correlated with alterations in renal function as reflected by dose- and time-dependent elevations in blood urea nitrogen levels as well as by the increased urinary excretion of protein, glucose and lactate dehydrogenase activity. The role of renal GSH metabolism as a mediating factor in the nephrotoxicity of these GSH conjugates was investigated by administering the gamma-glutamyltranspeptidase inhibitor AT-125 [L-(alpha-S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid]. Treatment with AT-125 led to a dose-dependent decrease in renal gamma-glutamyltranspeptidase activity that correlated inversely with increased GSH concentrations in the urine and kidney. Pretreatment with AT-125 ameliorated 2-bromohydroguinone-induced renal toxicity but did not protect against the CEG-induced renal lesion. In fact, pretreatment with AT-125 produced a dose-dependent potentiation of CEG renal toxicity. The CEG-induced renal lesion was dependent on a probenecid-sensitive transport system that was not involved in the toxicity of 2-bromohydroguinone. These studies demonstrate that CEG need not be metabolized by gamma-glutamyltranspeptidase to the corresponding cysteine adduct [S-(2-chloroethyl)cysteine] in order to enter renal tubule cells and ultimately exert its nephrotoxic action.[1]

References

 
WikiGenes - Universities