The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Environment-selective synergism using self-assembling cytotoxic and antimicrobial agents.

Environment-selective synergistic toxicity using combinations of aldehydes and hydrazine derivatives was demonstrated in two different model systems in vitro. Combinations of 5-nitro-2-furaldehyde with semi-carbazide and of 2-hydrazinopyridine with pyridine-2-carboxaldehyde, which can react in situ to form antimicrobial hydrazones, demonstrated greater degrees of synergism against the intracellular pathogen, Salmonella typhimurium, at pH 5 relative to pH 7. 4. Combinations are more selectively toxic at pH 5 (vs pH 7.4) than individual precursors and preformed hydrazone products because acid catalysis of hydrazone formation plays a role only for the combinations. A combination of decanal and N-amino, N'-octylguanidine (AOG) exhibited more pronounced synergistic cytolytic activity against erythrocytes in 0% serum than in 1% serum. Serum protein binding of decanal inhibited the formation of the more cytotoxic hydrazone, N-decylidenimino,N'-1-octylguanidine (DIOG), from the less cytotoxic AOG and decanal, and serum protein binding of DIOG prevented this cytotoxin from reaching the cell membrane. Because decanal binding cannot play a role in the cytotoxicity of preformed DIOG, it was less selective for cells in 0% serum than the combination of AOG and decanal. The pH 5 and 0% serum environments represent very simple models for macrophage phagolysosomal compartments and poorly vascularized solid tumor interiors respectively. If environment-selective synergism can be used as a basis for target-selective synergism in other in vitro model systems and in vivo, self-assembling combinations could provide a basis for rational introduction of target-selective synergism into chemotherapeutic drug design.[1]

References

  1. Environment-selective synergism using self-assembling cytotoxic and antimicrobial agents. Rideout, D., Jaworski, J., Dagnino, R. Biochem. Pharmacol. (1988) [Pubmed]
 
WikiGenes - Universities