Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities.
Nucleoside transport was examined in freshly isolated mouse intestinal epithelial cells. The uptake of formycin B, the C nucleoside analog of inosine, was concentrative and required extracellular sodium. The initial rate of sodium-dependent formycin B transport was saturable with a Km of 45 +/- 3 microM. The purine nucleosides adenosine, inosine, guanosine, and deoxyadenosine were all good inhibitors of sodium-dependent formycin B transport with 50% inhibition (IC50) observed at concentrations less than 30 microM. Of the pyrimidine nucleosides examined, only uridine (IC50, 41 +/- 9 microM) was a good inhibitor. Thymidine and cytidine were poor inhibitors with IC50 values greater than 300 microM. Direct measurements of [3H]thymidine transport revealed, however, that the uptake of this nucleoside was also mediated by a sodium-dependent mechanism. Thymidine transport was inhibited by low concentrations of cytidine, uridine, adenosine, and deoxyadenosine (IC50 values less than 25 microM), but not by formycin B, inosine, or guanosine (IC50 values greater than 600 microM). These data indicate that there are two sodium-dependent mechanisms for nucleoside transport in mouse intestinal epithelial cells, and that formycin B and thymidine may serve as model substrates to distinguish between these transporters. Neither of these sodium-dependent transport mechanisms was inhibited by nitrobenzylmercaptopurine riboside (10 microM), a potent inhibitor of one of the equilibrative (facilitated diffusion) nucleoside transporters found in many cells.[1]References
- Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. Vijayalakshmi, D., Belt, J.A. J. Biol. Chem. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg