The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man.

We have compared the capillary density and muscle fiber type of musculus vastus lateralis with in vivo insulin action determined by the euglycemic clamp (M value) in 23 Caucasians and 41 Pima Indian nondiabetic men. M value was significantly correlated with capillary density (r = 0.63; P less than or equal to 0.0001), percent type I fibers (r = 0.29; P less than 0.02), and percent type 2B fibers (r = -0.38; P less than 0.003). Fasting plasma glucose and insulin concentrations were significantly negatively correlated with capillary density (r = -0.46, P less than or equal to 0.0001; r = -0.47, P less than or equal to 0.0001, respectively). Waist circumference/thigh circumference ratio was correlated with percent type 1 fibers (r = -0.39; P less than 0.002). These results suggest that diffusion distance from capillary to muscle cells or some associated biochemical change, and fiber type, could play a role in determining in vivo insulin action. The association of muscle fiber type with body fat distribution may indicate that central obesity is only one aspect of a more generalized metabolic syndrome. The data may provide at least a partial explanation for the insulin resistance associated with obesity and for the altered kinetics of insulin action in the obese.[1]


  1. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. Lillioja, S., Young, A.A., Culter, C.L., Ivy, J.L., Abbott, W.G., Zawadzki, J.K., Yki-Järvinen, H., Christin, L., Secomb, T.W., Bogardus, C. J. Clin. Invest. (1987) [Pubmed]
WikiGenes - Universities