Protein biosynthesis in organelles requires misaminoacylation of tRNA.
In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNA(Glu) species at least two other glutamate-accepting tRNAs. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNA(Gln) (as judged by their UUG anticodon). These mischarged Glu-tRNA(Gln) species can be converted in crude chloroplast extracts to Gln-tRNA(Gln). This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA synthetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria. Thus, it appears that the occurrence of this pathway of Gln-tRNA(Gln) formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.[1]References
- Protein biosynthesis in organelles requires misaminoacylation of tRNA. Schön, A., Kannangara, C.G., Gough, S., Söll, D. Nature (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg