The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents.

A series of bifunctional alkylators were tested against the genotypically and phenotypically heterogeneous continuous human medulloblastoma cell lines, TE-671, Daoy, and D283 Med in vitro and against TE-671 and Daoy growing as s.c. and intracranial xenografts in athymic mice. Drugs tested included melphalan, cyclophosphamide, iphosphamide, phenylketocyclophosphamide, thiotepa, 1,3-bis(2-chloroethyl)-1-nitrosourea (in vivo), and busulfan (in vivo). Melphalan and phenylketocyclophosphamide were the most active agents in vitro with drug doses at which there is a 90% reduction in the number of colonies in comparison to controls of 2.13, 5.29, and 4.72 microM for melphalan and 4.60, 5.01, and 4.34 microM for phenylketocyclophosphamide against TE-671, D283 Med, and Daoy, respectively. Melphalan, cyclophosphamide, iphosphamide, phenylketocyclophosphamide, and thiotepa produced significant growth delays against s.c. TE-671 and Daoy xenografts, while no activity could be demonstrated for 1,3-bis(2-chloroethyl)-1-nitrosourea or busulfan. Melphalan, cyclophosphamide, iphosphamide, and thiotepa also produced significant increases in median survival in mice bearing intracranial TE-671 and Daoy xenografts. These results extend our previous studies demonstrating the antitumor activity of nitrogen and phosphoramide mustard-based bifunctional alkylating agents in the treatment of human medulloblastoma continuous cell lines and transplantable xenografts, and support the continued use of these agents in clinical trials.[1]

References

  1. Experimental chemotherapy of human medulloblastoma cell lines and transplantable xenografts with bifunctional alkylating agents. Friedman, H.S., Colvin, O.M., Skapek, S.X., Ludeman, S.M., Elion, G.B., Schold, S.C., Jacobsen, P.F., Muhlbaier, L.H., Bigner, D.D. Cancer Res. (1988) [Pubmed]
 
WikiGenes - Universities