The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes.

Entry of antibiotics into phagocytes is necessary for activity against intracellular organisms. Therefore, we examined the uptake of five of the newer antibiotics--roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole--by human polymorphonuclear leukocytes (PMN). Antibiotic uptake by PMN was determined by a velocity gradient centrifugation technique and expressed as the ratio of the cellular concentration of antibiotic to the extracellular concentration (C/E). Cefotaxime, like other beta-lactam antibiotics, was taken up poorly by phagocytes (C/E less than or equal to 0.3). The metronidazole concentration within PMN was similar to the extracellular level. Imipenem bound rapidly to phagocytes (C/E = 3), but cell-associated drug progressively declined during the incubation period. Trimethoprim was well concentrated by PMN (C/E = 9 to 13), and uptake was unexpectedly greater at 25 degrees C than at 37 degrees C. The most striking finding was that roxithromycin was more avidly concentrated by PMN (C/E = 34) than any other antibiotic we studied. Entry of roxithromycin into phagocytes was an active process and displayed saturation kinetics characteristic of a carrier-mediated membrane transport system. Ingestion of microbial particles by PMN slightly decreased the ability of these cells to accumulate roxithromycin (C/E = 24 to 31). These studies identified two antibiotics, trimethoprim and especially roxithromycin, which are markedly concentrated within human PMN and may prove useful in treatment of infections caused by susceptible intracellular organisms.[1]

References

 
WikiGenes - Universities