The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of cholesterol synthesis in primary rat hepatocyte culture cells. Possible regulatory site at sterol demethylation.

Primary rat hepatocyte culture cells were used to study the acute regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in response to 25-hydroxycholesterol, 3 beta,5 alpha,6 beta-cholestantriol, and mevalonolactone. All three effectors caused a rapid suppression of HMG-CoA reductase activity. 25-Hydroxycholesterol also caused an increase in the ratio of newly synthesized methyl sterols to newly synthesized C27-sterols. Furthermore, in 25-hydroxycholesterol-treated cells, the relative contribution of delta 24-sterol precursors to the nonsaponifiable lipid fraction increased. Di- and trimethyl-diene sterols were the dominant methyl sterols synthesized in the presence of 25-hydroxycholesterol. 3 beta,5 alpha,6 beta-Cholestrantriol (50 microM) also caused a very strong (97%) suppression of sterol demethylation; 4,4-dimethylmonoene sterols were more prominent (23%) in cells treated with 3 beta,5 alpha,6 beta-cholestrantriol, than in cells treated with 25-hydroxycholesterol (2%). The rates of both unesterified and esterified sterol synthesis increased as a function of exogenous mevalonolactone concentration. C27-sterol synthesis was saturated at a concentration of (R)-mevalonolactone which produced only a 33% suppression of HMG-CoA reductase activity. However, there was a direct relationship between the accumulation of methyl sterols and the decrease in HMG-CoA reductase activity. With the aid of triparanol, it was demonstrated that the suppression of HMG-CoA reductase activity by mevalonolactone was linked with the ability of the cells to convert squalene-2,3-epoxide into sterols. The results described in the present article support an important and perhaps necessary relationship between the rate of methyl sterol conversion of C27-sterols and the suppression or inhibition of HMG-Coa reductase in primary hepatocyte culture cells.[1]

References

 
WikiGenes - Universities