The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL169046     (3S,8S,9S,10R,13R,14S,17R)- 17-[(2R)-6...

Synonyms: SureCN177267, CPD-7285, AG-E-56772, CHEBI:42977, CTK4E6668, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 2140-46-7

 

High impact information on 2140-46-7

 

Chemical compound and disease context of 2140-46-7

 

Biological context of 2140-46-7

 

Anatomical context of 2140-46-7

 

Associations of 2140-46-7 with other chemical compounds

 

Gene context of 2140-46-7

 

Analytical, diagnostic and therapeutic context of 2140-46-7

References

  1. Activation of the silent endogenous cholesterol-7-alpha-hydroxylase gene in rat hepatoma cells: a new complementation group having resistance to 25-hydroxycholesterol. Leighton, J.K., Dueland, S., Straka, M.S., Trawick, J., Davis, R.A. Mol. Cell. Biol. (1991) [Pubmed]
  2. Selective decrease of the viability and the sterol content of proliferating versus quiescent glioma cells exposed to 25-hydroxycholesterol. Maltese, W.A., Reitz, B.A., Volpe, J.J. Cancer Res. (1981) [Pubmed]
  3. Oxysterol 7 alpha-hydroxylase activity by cholesterol 7 alpha-hydroxylase (CYP7A). Norlin, M., Andersson, U., Björkhem, I., Wikvall, K. J. Biol. Chem. (2000) [Pubmed]
  4. Control of low density lipoprotein receptor gene promoter activity. Ketoconazole inhibits serum lipoprotein but not oxysterol suppression of gene transcription. Takagi, K., Alvarez, J.G., Favata, M.F., Trzaskos, J.M., Strauss, J.F. J. Biol. Chem. (1989) [Pubmed]
  5. Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptotic effects. Larsson, D.A., Baird, S., Nyhalah, J.D., Yuan, X.M., Li, W. Free Radic. Biol. Med. (2006) [Pubmed]
  6. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. Hultén, L.M., Lindmark, H., Diczfalusy, U., Björkhem, I., Ottosson, M., Liu, Y., Bondjers, G., Wiklund, O. J. Clin. Invest. (1996) [Pubmed]
  7. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. Watson, K.E., Boström, K., Ravindranath, R., Lam, T., Norton, B., Demer, L.L. J. Clin. Invest. (1994) [Pubmed]
  8. Regulation of rat biliary cholesterol secretion by agents that alter intrahepatic cholesterol metabolism. Evidence for a distinct biliary precursor pool. Stone, B.G., Erickson, S.K., Craig, W.Y., Cooper, A.D. J. Clin. Invest. (1985) [Pubmed]
  9. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. Ridgway, N.D., Dawson, P.A., Ho, Y.K., Brown, M.S., Goldstein, J.L. J. Cell Biol. (1992) [Pubmed]
  10. Localization of StarD5 cholesterol binding protein. Rodriguez-Agudo, D., Ren, S., Hylemon, P.B., Montañez, R., Redford, K., Natarajan, R., Medina, M.A., Gil, G., Pandak, W.M. J. Lipid Res. (2006) [Pubmed]
  11. Effects of 25-hydroxycholesterol and aminoglutethimide in isolated rat adrenal cells. A model for congenital lipoid adrenal hyperplasia? Falke, H.E., Degenhart, H.J., Abeln, G.J., Visser, H.K. Mol. Cell. Endocrinol. (1976) [Pubmed]
  12. Expression of functional bovine cholesterol side chain cleavage cytochrome P450 (P450scc) in Escherichia coli. Wada, A., Mathew, P.A., Barnes, H.J., Sanders, D., Estabrook, R.W., Waterman, M.R. Arch. Biochem. Biophys. (1991) [Pubmed]
  13. Inhibition of cytolytic T lymphocyte activity by oxysterols. Küçük, O., Stoner-Picking, J., Yachnin, S., Gordon, L.I., Williams, R.M., Lis, L.J., Westerman, M.P. Lipids (1994) [Pubmed]
  14. Influence of cholesterol derivatives on cytoskeletal organization of human carcinoma cells. Ludes, B., Schmit, A.C., Cremel, G., Lambert, A.M., Hubert, P., Jacqmin, D., Bollack, C., Staedel, C. Eur. Urol. (1993) [Pubmed]
  15. Recurrent G-to-A substitution in a single codon of SREBP cleavage-activating protein causes sterol resistance in three mutant Chinese hamster ovary cell lines. Nohturfft, A., Hua, X., Brown, M.S., Goldstein, J.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Nohturfft, A., Brown, M.S., Goldstein, J.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. Kinetics of G1 progression in 3T6 and SV-3T3 cells following treatment by 25-hydroxycholesterol. Larsson, O., Zetterberg, A. Cancer Res. (1986) [Pubmed]
  18. Transcriptional derepression of the murine Cyp1a-1 gene by mevinolin. Puga, A., Raychaudhuri, B., Nebert, D.W. FASEB J. (1992) [Pubmed]
  19. AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. Rusiñol, A.E., Thewke, D., Liu, J., Freeman, N., Panini, S.R., Sinensky, M.S. J. Biol. Chem. (2004) [Pubmed]
  20. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Lund, E.G., Guileyardo, J.M., Russell, D.W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  21. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro. Hotta, M., Baird, A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  22. Enhancement in the adhesion of tumor cells to endothelial cells by decreased cholesterol synthesis. Ramachandran, C.K., Sanders, K., Melnykovych, G. Cancer Res. (1986) [Pubmed]
  23. Sterol synthesis in variant Chinese hamster lung cells selected for resistance to 25-hydroxycholesterol. Cross-resistance to 7-ketocholesterol, 20alpha-hydroxycholesterol, and serum. Chen, H.W., Cavenee, W.K., Kandutsch, A.A. J. Biol. Chem. (1979) [Pubmed]
  24. Analysis of regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in a somatic cell mutant auxotrophic for mevalonate. Sinensky, M., Torget, R., Schnitzer-Polokoff, R., Edwards, P.A. J. Biol. Chem. (1982) [Pubmed]
  25. Transforming growth factor beta1 decreases cholesterol supply to mitochondria via repression of steroidogenic acute regulatory protein expression. Brand, C., Cherradi, N., Defaye, G., Chinn, A., Chambaz, E.M., Feige, J.J., Bailly, S. J. Biol. Chem. (1998) [Pubmed]
  26. Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Moreau, M., Brocheriou, I., Petit, L., Ninio, E., Chapman, M.J., Rouis, M. Circulation (1999) [Pubmed]
  27. Complementation of mutation in acyl-CoA:cholesterol acyltransferase (ACAT) fails to restore sterol regulation in ACAT-defective sterol-resistant hamster cells. Cao, G., Goldstein, J.L., Brown, M.S. J. Biol. Chem. (1996) [Pubmed]
  28. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. Adams, C.M., Reitz, J., De Brabander, J.K., Feramisco, J.D., Li, L., Brown, M.S., Goldstein, J.L. J. Biol. Chem. (2004) [Pubmed]
  29. Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice. Agellon, L.B., Drover, V.A., Cheema, S.K., Gbaguidi, G.F., Walsh, A. J. Biol. Chem. (2002) [Pubmed]
  30. Molecular and biochemical characterization of a novel oxysterol-binding protein (OSBP2) highly expressed in retina. Moreira, E.F., Jaworski, C., Li, A., Rodriguez, I.R. J. Biol. Chem. (2001) [Pubmed]
  31. Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells. Faust, J.R., Luskey, K.L., Chin, D.J., Goldstein, J.L., Brown, M.S. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  32. Difference in the ability of compactin and oxidized cholesterol, both known inhibitors of cholesterol biosynthesis, to suppress in vitro immune responses. Humphries, G.M. Cancer Res. (1981) [Pubmed]
  33. Evidence indicating that inactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein or by 25-hydroxycholesterol requires mediator protein(s) with rapid turnover rate. Chang, T.Y., Limanek, J.S., Chang, C.C. J. Biol. Chem. (1981) [Pubmed]
  34. Purification of oxysterol binding protein from hamster liver cytosol. Dawson, P.A., Van der Westhuyzen, D.R., Goldstein, J.L., Brown, M.S. J. Biol. Chem. (1989) [Pubmed]
  35. Differences in the characteristics of inhibition of lymphocyte stimulation by 25-hydroxycholesterol and by the immunoregulatory serum lipoprotein LDL-In. Curtiss, L.K., Edgington, T.S. J. Immunol. (1980) [Pubmed]
 
WikiGenes - Universities