The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

An epithelial cell line with elongated myoid morphology derived from bovine mammary gland. Expression of cytokeratins and desmosomal plaque proteins in unusual arrays.

Cells of a clonal line (BMGE + HM) selected from bovine mammary gland epithelial cell cultures are described which, after reaching confluence, do not assume typical epithelioid morphology, but form elongated cells with long slender processes extending over the surfaces of other cells. However, cells of this line which display non-epithelioid morphology and are exceptionally rich in actin microfilaments are identified as epithelial cells by their synthesis of cytokeratins and desmosomal plaque proteins, as demonstrated by immunofluorescence and immunoelectron microscopy and by gel electrophoresis of cytoskeletal proteins. The cells do not produce vimentin and desmin filaments. The specific cytokeratin polypeptides of these myoid cells are identical to those present in normal epithelioid BMGE + H cells but are arranged in unusual arrays of meshworks of finely dispersed, non-fasciated filaments and granular structures. Desmosomal plaque proteins, notably desmoplakins, are abundant, but the electron microscopic appearance of the desmosomes is abnormal in that most of them are associated with a second accessory plaque formed at a distance of 0.1-0.15 micron from the normal desmosomal plaque. Both cytokeratin filaments and desmosomal structures are found throughout the whole cytoplasm, including the extended cell processes. The existence of an epithelial cell line with such an unusual morphology demonstrates the importance of non-morphological criteria in identifying epithelium-derived cells. Our findings also indicate that dramatic differences of cell shape and organization of epithelial cells need not necessarily be associated with changes in the expression of specific cytoskeletal proteins. The possible origin of this cell line from myoepithelial cells is discussed.[1]


WikiGenes - Universities