The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hemolytic anemia in hereditary pyrimidine 5'-nucleotidase deficiency: nucleotide inhibition of G6PD and the pentose phosphate shunt.

We evaluated the erythrocytes of two patients with hereditary pyrimidine 5'-nucleotidase deficiency. Significant findings included an increased reduced glutathione content, increased incubated Heinz body formation, a positive ascorbate cyanide test, and decreased intraerythrocytic pH. The pentose phosphate shunt activity of the patients' red cells as measured by the release of 14CO2 from 14C-1-glucose was decreased compared to high reticulocyte controls. Glucose-6-phosphate dehydrogenase (G6PD) activity in hemolysates from control erythrocytes was inhibited 43% by 5.5 mM cytidine 5'-triphosphate (CTP) and 50% by 5.5 mM in uridine 5'-triphosphate (UTP) at pH 7. 1. CTP was a competitive inhibitor for G6P (Ki = 1.7 mM) and a noncompetitive inhibitor for NADP+ (Ki = 7.8 mM). Glutathione peroxidase, glutathione reductase, and 6-phosphogluconate dehydrogenase were not affected by these compounds. Pentose phosphate shunt activity in control red cell hemolysate at pH 7.1 was inhibited to a similar degree by 5.5 mM CTP or UTP. Since the intracellular concentrations of G6P and NADP+ are below their KmS for G6PD, these data suggest that high concentrations of pyrimidine 5'-nucleotides depress pentose phosphate shunt activity in pyrimidin 5'-nucleotidase deficiency. Thus, this impairment of the pentose phosphate pathway appears to contribute to the pathogenesis of hemolysis in pyrimidine 5'-nucleotidase deficiency hemolytic anemia.[1]

References

 
WikiGenes - Universities