The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The transport of proteins into yeast mitochondria. Kinetics and pools.

By double isotope pulse-labeling of yeast cells, we determined the kinetics of labeling at 9 degrees C of total mitochondrial membrane, mitochondrial matrix, and cytosolic proteins, the alpha, beta, and gamma subunits of F1 ATPase, and glyceraldehyde-3-phosphate dehydrogenase. We find that none of the mitochondrial proteins show a lag in the incorporation of label compared to cytosolic proteins. These results argue against the existence in the cytosol of large pools of mitochondrial proteins awaiting transport into the organelle. Cycloheximide addition during the pulse stops [35S]methionine incorporation into mitochondrial membrane and cytosolic proteins rapidly (approximately 1 min) and with identical kinetics. Compared to cytosolic protein, however, there is a persistent incorporation of label into mitochondria after a chase with cold methionine (t1/2 approximately 1.5 min at 9 degrees C) which cannot be accounted for solely by chain completion. We conclude that this continued incorporation reflects some transport process in addition to a completion of a round of translation. When cells are labeled during a synchronous "restart" of protein synthesis, where ribosome run-off from mRNA was first induced either by incubating cells for 4 h at 0 degrees C or by treatment with 5 mM aurintricarboxylic acid, the initial rate of incorporation of label into mitochondrial protein now lags behind that of cytosolic proteins. From these results and those in the accompanying report (Ades, I.Z., and Butow, R.A. (1980) J. Biol. Chem. 255, 9918-9924) we propose that the translation of mRNA specific for mitochondrial proteins takes place in the cytoplasm and that at least a portion of the polysomes are then transported and bind to the outer mitochondrial membrane, followed by completion of translation and transfer of the newly synthesized polypeptides into the mitochondria. From a consideration of all of the available data on protein transport into mitochondria in yeast, we conclude that cytoplasmic polysomes bound to the outer mitochondrial membrane function in the transport of proteins into mitochondria by a process not necessarily mutually exclusive of post-translational transport.[1]

References

  1. The transport of proteins into yeast mitochondria. Kinetics and pools. Ades, I.Z., Butow, R.A. J. Biol. Chem. (1980) [Pubmed]
 
WikiGenes - Universities