The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sodium-chloride transport in the medullary thick ascending limb of Henle's loop: evidence for a sodium-chloride cotransport system in plasma membrane vesicles.

Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop ( TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.[1]

References

 
WikiGenes - Universities