The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The metabolism of L-tryptophan by liver cells prepared from adrenalectomized and streptozotocin-diabetic rats.

1. The metabolism of L-tryptophan by liver cells prepared from fed normal, adrenalectomized and streptozotocin-diabetic rats was studied. 2. At physiological concentrations (0.1 mM), the rate of oxidation of tryptophan by tryptophan 2,3-dioxygenase was 3-fold greater in liver cells from diabetic rats than in those from fed rats. In liver cells from diabetic rats, oxidation of tryptophan to CO2 and metabolites of the glutarate pathway was increased 7-fold. Quinolinate synthesis was decreased by 50%. These findings are consistent with an increase in picolinate carboxylase activity. 3. Rates of metabolism of 0.1 mM-tryptophan by hepatocytes from fed and adrenalectomized rats were similar. 4. In all three types of cell preparation, fluxes through tryptophan 2,3-dioxygenase with 2.5 mM-tryptophan were 7-fold greater than those obtained with 0.1 mM-tryptophan. Tryptophan 2,3-dioxygenase and kynureninase fluxes in hepatocytes from fed and adrenalectomized rats were comparable, whereas those in liver cells from diabetic rats were increased 2.5-fold and 3.3-fold respectively. Picolinate carboxylase activities of liver cells from diabetic rats were 15-fold greater than those of cells from fed rats, but rates of quinolinate synthesis were unchanged. 5. It is concluded that: (i) adrenal corticosteroids are not required for the maintenance of basal activities of the kynurenine pathway, whereas (ii) chronic insulin deficiency produces changes in both the rate of oxidation and metabolic fate of tryptophan carbon.[1]

References

 
WikiGenes - Universities