The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Independent regulation of H-2K and H-2D gene expression in murine teratocarcinoma somatic cell hybrids.

Cells of two teratocarcinoma stem cell lines (PCC4 azaguanine [aza] 1 and F9 5-bromodeoxyuridine [BrdU]) were fused with normal mouse spleen cells and mouse thymoma-derived cells (BW 5147), respectively. Hybrid clones were tested for the expression of molecules coded by the H-2K and -2D genes both by absorption analysis of conventional H-2 sera and by indirect antibody-binding radioimmunoassay with monoclonal antibodies. Somatic cell hybrids between PCC4 aza 1 and spleen cells morphologically resemble teratocarcinoma stem cells and do not express H-2 antigens. However, after differentiation in vitro, one of these hybrid clones expresses the H-2K and -2D gene products of both parental cell lines, one close expresses H-2-D- but not H-2K-coded antigenic determinants, and one clone remains H-2 negative. Somatic cell hybrids between F9 BrdU and BW 5147 resemble fibroblasts. Analysis of a series of hybrid clones revealed some clones that express both the H-2K- and H-2D-coded antigenic specificities of both parental alleles, some that express H-2D gene products strongly and the H-2K gene products very weakly, and some that express H-2D- but not H-2K-coded molecules. These results imply independent regulation of expression of the H-2K and -2D genes. The H-2D gene products appear to be preferentially expressed if the hybrid cells are capable of expressing H-2. The results suggest complex regulatory mechanisms that are H-2K and H-2D specific.[1]


WikiGenes - Universities