The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Creatine and creatinine transport in old and young human red blood cells.

The time course of creatine influx or efflux as measured in populations of red cells or red cell ghosts with normal age distribution does not follow simple two-compartment kinetics. This suggests that the contributions of individual cells to transport as measured in the populations as a whole are not uniform. In agreement with this inference, fractionation of red cell populations with respect to cell age shows that transport in young cells is considerably faster than in old cells. The dependence of creatine transport on creatine concentration in the medium follows an equation that can be interpreted to represent a super-imposition of a saturable component (apparent Km = 0.02 mM) and another component that cannot be saturated up to a creatine concentration of 5.0 mM. In contrast to the non-saturable component, the saturable component depends on the energy metabolism of the cell and can be inhibited by beta-guanidinopropionic acid and the proteolytic enzyme pronase. This latter finding suggests that the saturable component represents active transport that is mediated by a transport protein. The non-saturable component is little, if at all, dependent on cell age while the saturable component is higher in young cells than in old cells. Phloretin inhibits both components of creatine flux, but the maximal inhibition that can be achieved at high concentration is only 70--80%. Under the experimental conditions used for the study of creatine transport, creatinine equilibration between cells and medium follows the kinetics expected for a steady-state two-compartment system. Creatinine flux is proportional to creatine concentration over the concentration range studied (up to 5 mM). It cannot be inhibited by beta-guanidinopropionic acid or pronase.[1]

References

  1. Creatine and creatinine transport in old and young human red blood cells. Ku, C.P., Passow, H. Biochim. Biophys. Acta (1980) [Pubmed]
 
WikiGenes - Universities