The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulatory mechanisms of the acrosome reaction revealed by multiview microscopy of single starfish sperm.

The acrosome reaction in many animals is a coupled reaction involving an exocytotic step and a dramatic change in cell shape. It has been proposed that these morphological changes are regulated by intracellular ions such as Ca2+ and H+. We report here simultaneous visualization, under a multiview microscope, of intracellular free Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and morphological changes in a single starfish sperm (Asterina pectinifera). [Ca2+]i and pHi were monitored with the fluorescent probes indo-1 and SNARF-1, respectively. The acrosome reaction was induced with ionomycin. After the introduction of ionomycin in the medium, [Ca2+]i increased gradually and reached a plateau in approximately 30 s. The fusion of the acrosomal vacuole took place abruptly before the plateau, during the rising phase. Although the speed of the [Ca2+]i increase varied among the many sperm tested, exocytosis in all cases occurred at the same [Ca2+]i of approximately 2 microM (estimated using the dissociation constant of indo-1 for Ca2+ of 1.1 microM). This result suggests that the exocytotic mechanism in starfish sperm responds to [Ca2+]i rapidly, with a reaction time of the order of one second or less. Unlike the change in [Ca2+]i, an abrupt increase in pHi was observed immediately after exocytosis, suggesting the presence of a proton mobilizing system that is triggered by exocytosis. The rapid increase in pHi coincided with the formation of the acrosomal rod and the beginning of vigorous movement of the flagellum, both of which have been proposed to be pHi dependent. The exocytotic event itself was visualized with the fluorescent membrane probe RH292. The membrane of the acrosomal vacuole, concealed from the external medium in an unreacted sperm, was seen to fuse with the plasma membrane.[1]


  1. Regulatory mechanisms of the acrosome reaction revealed by multiview microscopy of single starfish sperm. Sase, I., Okinaga, T., Hoshi, M., Feigenson, G.W., Kinosita, K. J. Cell Biol. (1995) [Pubmed]
WikiGenes - Universities