The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains.

A previously recognized open reading frame (T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata, Nucleic Acids Res. 20:3305-3308) from the 0.2-min region of the Escherichia coli K-12 chromosome is shown to encode a functional transaldolase activity. After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate dihydroxyacetone transferase; EC was overexpressed up to 12.7 U mg of protein-1 compared with less than 0.1 U mg of protein-1 in wild-type homogenates. The enzyme was purified from recombinant E. coli K-12 cells by successive ammonium sulfate precipitations (45 to 80% and subsequently 55 to 70%) and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE tentacle column; yield, 130 mg of protein from 12 g of cell wet weight) and afforded an apparently homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit size of 35,000 +/- 1,000 Da. As the enzyme had a molecular mass of 70,000 Da by gel filtration, transaldolase B is likely to form a homodimer. N-terminal amino acid sequencing of the protein verified its identity with the product of the cloned gene talB. The specific activity of the purified enzyme determined at 30 degrees C with the substrates fructose-6-phosphate (donor of C3 compound) and erythrose-4-phosphate (acceptor) at an optimal pH (50 mM glycylglycine [pH 8.5]) was 60 U mg-1.Km values for the substrates fructose-6-phosphate and erythrose-4-phosphate were determined at 1,200 and 90 microM, respectively. Kinetic constants for the other two physiological reactants, D,L-glyceraldehyde 3-phosphate (Km, 38 microM; relative activity [V(rel)], 8%) and sedoheptulose-7-phosphate (K(m), 285 microM; V(rel), 5%) were also determined. Fructose acted as a C(3) donor at a high apparent K(m) (>/=M) and with a V(rel) of 12%. The enzyme was inhibited by Tris-HCl, phosphate, or sugars with the L configuration at C(2) (L-glyceraldehyde, D-arabinose-5-phosphate).[1]


WikiGenes - Universities