The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression and characterization of the zeta 1 subunit of the N-methyl-D-aspartate (NMDA) receptor channel in a baculovirus system.

Using a baculovirus expression vector system, the zeta 1 subunit of the mouse N-methyl-D-aspartate (NMDA) receptor channel was expressed in Spodoptera frugiperda insect cells. The peptide corresponding to the C-terminus of the zeta 1 subunit was synthesized by using the multiple antigen peptide (MAP) system, and an antibody to the synthetic peptide was produced. Immunoblotting using the newly developed antibody revealed the major 122-kDa and the minor 104-kDa protein bands. The effect of tunicamycin on the immunoblots and [35S]methionine/[35S]cysteine metabolic radiolabeling suggested that the two bands corresponded to glycosylated and non-N-glycosylated forms, respectively. Membranes prepared from insect cells infected with the recombinant virus had the binding activity of antagonist ligand 5,7-[3-3H]dichlorokynurenate (DCKA) of a glycine recognition domain of the receptor. Both immunofluorescence labeling and the [3H]DCKA binding assays also showed a greater level of expression (Bmax = 51 pmol/ mg protein) in the insect cells. The ligand binding characteristics of the receptors expressed in insect cells suggested that the single zeta 1 subunit protein has glycine antagonist binding properties comparable to those of the native NMDA receptor channels. The lack of DCKA-binding activity of the non-N-glycosylated NMDA receptor expressed in the presence of tunicamycin suggested that N-linked oligosaccharide is essentially required for expression of a functional receptor in insect cells. This is the first report describing the importance of N-glycosylation for the acquisition of ligand binding to NMDA receptor channel subunit protein.[1]

References

  1. Expression and characterization of the zeta 1 subunit of the N-methyl-D-aspartate (NMDA) receptor channel in a baculovirus system. Kawamoto, S., Uchino, S., Hattori, S., Hamajima, K., Mishina, M., Nakajima-Iijima, S., Okuda, K. Brain Res. Mol. Brain Res. (1995) [Pubmed]
 
WikiGenes - Universities