The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair.

The hydrolytic deamination of 5-methylcytosine (5-mC) to thymine (T) is believed to be responsible for the high mutability of the CpG dinucleotide in DNA. We have shown a possible alternate mechanism for mutagenesis at CpG in which HpaII DNA-(cytosine-5) methyltransferase (M.HpaII) can enzymatically deaminate cytosine ( C) to uracil (U) in DNA [Shen, J.-C., Rideout, W.M., III and Jones, P.A., Cell, 71, 1073-1080, (1992)]. Both the hydrolytic deamination of 5-mC and enzymatic deamination of C create premutagenic DNA mismatches (G:U and G:T) with the guanine ( G) originally paired to the normal C. Surprisingly, we found that DNA-(cytosine-5) methyltransferases have higher affinities for these DNA mismatches than for their normal G:C targets and are capable of transferring a methyl group to the 5-position of U, creating T at low efficiencies. This binding by methyltransferase to mismatches at the recognition site prevented repair of G:U mismatches by uracil DNA glycosylase in vitro.[1]

References

  1. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Yang, A.S., Shen, J.C., Zingg, J.M., Mi, S., Jones, P.A. Nucleic Acids Res. (1995) [Pubmed]
 
WikiGenes - Universities