The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

UNG  -  uracil-DNA glycosylase

Homo sapiens

Synonyms: DGU, HIGM4, HIGM5, UDG, UNG1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of UNG

 

High impact information on UNG

  • Uracil-DNA glycosylase inhibitor (Ugi) is a B. subtilis bacteriophage protein that protects the uracil-containing phage DNA by irreversibly inhibiting the key DNA repair enzyme uracil-DNA glycosylase (UDG) [6].
  • Crystal structures of the DNA repair enzyme human uracil-DNA glycosylase (UDG), combined with mutational analysis, reveal the structural basis for the specificity of the enzyme [7].
  • Within the classic alpha/beta fold of UDG, sequence-conserved residues form a positively charged, active-site groove the width of duplex DNA, at the C-terminal edge of the central four-stranded parallel beta sheet [7].
  • Ugi binds the sequence-conserved DNA-binding groove of UDG via shape and electrostatic complementarity, specific charged hydrogen bonds, and hydrophobic packing enveloping Leu-272 from a protruding UDG loop [6].
  • This caused an approximately 10(4)-fold increase in the rate of reversion when the mutant neo plasmid was transformed into bacteria lacking uracil-DNA glycosylase [8].
 

Chemical compound and disease context of UNG

 

Biological context of UNG

 

Anatomical context of UNG

 

Associations of UNG with chemical compounds

 

Physical interactions of UNG

  • These results demonstrate that this monoclonal antibody recognizes not only the DNA polymerase alpha subunit but also the uracil DNA glycosylase when it is physically attached to the polymerase subunit [21].
  • Mutational analyses revealed that our predicted PCNA-binding region (AKTLF) in P. furiosus UDG is actually important for the interaction with PfuPCNA [22].
 

Enzymatic interactions of UNG

 

Regulatory relationships of UNG

 

Other interactions of UNG

 

Analytical, diagnostic and therapeutic context of UNG

References

  1. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. Kavli, B., Andersen, S., Otterlei, M., Liabakk, N.B., Imai, K., Fischer, A., Durandy, A., Krokan, H.E., Slupphaug, G. J. Exp. Med. (2005) [Pubmed]
  2. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. Kaiser, S.M., Emerman, M. J. Virol. (2006) [Pubmed]
  3. Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Scaramozzino, N., Sanz, G., Crance, J.M., Saparbaev, M., Drillien, R., Laval, J., Kavli, B., Garin, D. Nucleic Acids Res. (2003) [Pubmed]
  4. Functional role of HIV-1 virion-associated uracil DNA glycosylase 2 in the correction of G:U mispairs to G:C pairs. Priet, S., Navarro, J.M., Gros, N., Querat, G., Sire, J. J. Biol. Chem. (2003) [Pubmed]
  5. Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. Chen, R., Le Rouzic, E., Kearney, J.A., Mansky, L.M., Benichou, S. J. Biol. Chem. (2004) [Pubmed]
  6. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W., Tainer, J.A. Cell (1995) [Pubmed]
  7. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Mol, C.D., Arvai, A.S., Slupphaug, G., Kavli, B., Alseth, I., Krokan, H.E., Tainer, J.A. Cell (1995) [Pubmed]
  8. High frequency mutagenesis by a DNA methyltransferase. Shen, J.C., Rideout, W.M., Jones, P.A. Cell (1992) [Pubmed]
  9. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. Parikh, S.S., Mol, C.D., Slupphaug, G., Bharati, S., Krokan, H.E., Tainer, J.A. EMBO J. (1998) [Pubmed]
  10. Activation-induced cytidine deaminase acts on double-strand breaks in vitro. Shen, H.M. Mol. Immunol. (2007) [Pubmed]
  11. New Insights on the Role of the gamma-Herpesvirus Uracil-DNA Glycosylase Leucine Loop Revealed by the Structure of the Epstein-Barr Virus Enzyme in Complex with an Inhibitor Protein. Géoui, T., Buisson, M., Tarbouriech, N., Burmeister, W.P. J. Mol. Biol. (2007) [Pubmed]
  12. Antifolate-induced misincorporation of deoxyuridine monophosphate into DNA by cells from patients with the fragile X syndrome. Wang, J.C., Beardsley, G.P., Erbe, R.W. Am. J. Med. Genet. (1985) [Pubmed]
  13. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. Nagelhus, T.A., Haug, T., Singh, K.K., Keshav, K.F., Skorpen, F., Otterlei, M., Bharati, S., Lindmo, T., Benichou, S., Benarous, R., Krokan, H.E. J. Biol. Chem. (1997) [Pubmed]
  14. Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Haug, T., Skorpen, F., Aas, P.A., Malm, V., Skjelbred, C., Krokan, H.E. Nucleic Acids Res. (1998) [Pubmed]
  15. Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Mendez, F., Sandigursky, M., Franklin, W.A., Kenny, M.K., Kureekattil, R., Bases, R. Radiat. Res. (2000) [Pubmed]
  16. The cyclin-like uracil DNA glycosylase (UDG) of murine oocytes and its relationship to human and chimpanzee homologues. Hirst, R., Gosden, R., Miller, D. Gene (2006) [Pubmed]
  17. Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Recruits Uracil DNA Glycosylase 2 at the Terminal Repeats and Is Important for Latent Persistence of the Virus. Verma, S.C., Bajaj, B.G., Cai, Q., Si, H., Seelhammer, T., Robertson, E.S. J. Virol. (2006) [Pubmed]
  18. Synthesis and high-throughput evaluation of triskelion uracil libraries for inhibition of human dUTPase and UNG2. Jiang, Y.L., Chung, S., Krosky, D.J., Stivers, J.T. Bioorg. Med. Chem. (2006) [Pubmed]
  19. Uracils as a cellular weapon against viruses and mechanisms of viral escape. Priet, S., Sire, J., Quérat, G. Current HIV research. (2006) [Pubmed]
  20. Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. Ko, R., Bennett, S.E. DNA Repair (Amst.) (2005) [Pubmed]
  21. Physical association of the human base-excision repair enzyme uracil DNA glycosylase with the 70,000-dalton catalytic subunit of DNA polymerase alpha. Seal, G., Sirover, M.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  22. Physical and functional interactions between uracil-DNA glycosylase and proliferating cell nuclear antigen from the euryarchaeon Pyrococcus furiosus. Kiyonari, S., Uchimura, M., Shirai, T., Ishino, Y. J. Biol. Chem. (2008) [Pubmed]
  23. MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of immunoglobulin gene diversification. Larson, E.D., Cummings, W.J., Bednarski, D.W., Maizels, N. Mol. Cell (2005) [Pubmed]
  24. Altered temporal expression of DNA repair in hypermutable Bloom's syndrome cells. Gupta, P.K., Sirover, M.A. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  25. Abnormal regulation of uracil-DNA glycosylase induction during cell cycle and cell passage in Bloom's syndrome fibroblasts. Yamamoto, Y., Fujiwara, Y. Carcinogenesis (1986) [Pubmed]
  26. hSMUG1 can functionally compensate for Ung1 in the yeast Saccharomyces cerevisiae. Elateri, I., Tinkelenberg, B.A., Hansbury, M., Caradonna, S., Muller-Weeks, S., Ladner, R.D. DNA Repair (Amst.) (2003) [Pubmed]
  27. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. Peña-Diaz, J., Akbari, M., Sundheim, O., Farez-Vidal, M.E., Andersen, S., Sneve, R., Gonzalez-Pacanowska, D., Krokan, H.E., Slupphaug, G. J. Mol. Biol. (2004) [Pubmed]
  28. The transcription factor, NFI/CTF plays a positive regulatory role in expression of the hSMUG1 gene. Elateri, I., Muller-Weeks, S., Caradonna, S. DNA Repair (Amst.) (2003) [Pubmed]
  29. Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Caradonna, S., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., Muller, S. Exp. Cell Res. (1996) [Pubmed]
  30. Cell cycle regulation and subcellular localization of the major human uracil-DNA glycosylase. Nagelhus, T.A., Slupphaug, G., Lindmo, T., Krokan, H.E. Exp. Cell Res. (1995) [Pubmed]
 
WikiGenes - Universities