The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Microbore liquid chromatography of tertiary amine anticholinergic pharmaceuticals with tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection.

The post-column chemiluminescent reaction of six anticholinergic alkaloid compounds with tris(2,2'-bipyridine)ruthenium(III) (Ru(bpy)3(3+)) is applied to microbore high-performance liquid chromatography (HPLC). At flow rates less than 200 microL/min, the capillary mixing cell in which Ru(bpy)3(3+) and the analyte are mixed directly allows for good light detection. In contrast, a diminished signal occurs at these low flow rates with conventional post-column mixing in a tee. Optimal chemiluminescent pH conditions for atropine, scopolamine, dicyclomine, cyclopentolate, cyclobenzaprine, and procyclidine are determined at moderately basic conditions (pH 7 to 9). 2-Butanone is found to be compatible with the chemiluminescent reaction, whereas tetrahydrofuran and propionitrile cause an increase in background noise and a chemiluminescent signal loss. As 2-butanone is more nonpolar than acetonitrile, it assists in the elution of these hydrophobic anticholinergic compounds. Five anticholinergic compounds are resolved successfully with a PRP-1 polymeric column and a slightly basic mobile phase, but a C8 silica column is better suited for the more hydrophobic compounds (cyclobenzaprine, procyclidine, and dicyclomine).[1]


WikiGenes - Universities